On the magnitudes of deviations and spreads of meromorphic functions of finite lower order
    
    
  
  
  
      
      
      
        
Sbornik. Mathematics, Tome 186 (1995) no. 3, pp. 391-408
    
  
  
  
  
  
    
      
      
        
      
      
      
    Voir la notice de l'article provenant de la source Math-Net.Ru
            
              			We investigate the influence that the number of maximum modulus points of a meromorphic function on the circle $|z|=r$ has on the magnitudes of growth and value distribution. Sharp estimates are obtained for the corresponding magnitudes.
			
            
            
            
          
        
      @article{SM_1995_186_3_a5,
     author = {I. I. Marchenko},
     title = {On the magnitudes of deviations and spreads of meromorphic functions of finite lower order},
     journal = {Sbornik. Mathematics},
     pages = {391--408},
     publisher = {mathdoc},
     volume = {186},
     number = {3},
     year = {1995},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_1995_186_3_a5/}
}
                      
                      
                    I. I. Marchenko. On the magnitudes of deviations and spreads of meromorphic functions of finite lower order. Sbornik. Mathematics, Tome 186 (1995) no. 3, pp. 391-408. http://geodesic.mathdoc.fr/item/SM_1995_186_3_a5/
