Conditional limit theorem for products of random matrices
Sbornik. Mathematics, Tome 186 (1995) no. 3, pp. 371-389

Voir la notice de l'article provenant de la source Math-Net.Ru

Products of independent random matrices with identical densities with respect to the Haar measure on the group of unimodular matrices $\operatorname{SL}(m,\mathbb R)$ are considered. With the standard normalization, the conditional distributions of such products, given that these products belong to some compactum, are shown to converge weakly to the distributions of the Brownian bridge.
@article{SM_1995_186_3_a4,
     author = {A. V. Letchikov},
     title = {Conditional limit theorem for products of random matrices},
     journal = {Sbornik. Mathematics},
     pages = {371--389},
     publisher = {mathdoc},
     volume = {186},
     number = {3},
     year = {1995},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_1995_186_3_a4/}
}
TY  - JOUR
AU  - A. V. Letchikov
TI  - Conditional limit theorem for products of random matrices
JO  - Sbornik. Mathematics
PY  - 1995
SP  - 371
EP  - 389
VL  - 186
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SM_1995_186_3_a4/
LA  - en
ID  - SM_1995_186_3_a4
ER  - 
%0 Journal Article
%A A. V. Letchikov
%T Conditional limit theorem for products of random matrices
%J Sbornik. Mathematics
%D 1995
%P 371-389
%V 186
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SM_1995_186_3_a4/
%G en
%F SM_1995_186_3_a4
A. V. Letchikov. Conditional limit theorem for products of random matrices. Sbornik. Mathematics, Tome 186 (1995) no. 3, pp. 371-389. http://geodesic.mathdoc.fr/item/SM_1995_186_3_a4/