Directional differentiability of the distance function
Sbornik. Mathematics, Tome 186 (1995) no. 3, pp. 337-358
Voir la notice de l'article provenant de la source Math-Net.Ru
In this paper we construct an invariant of integrable Hamiltonian systems with two degrees of freedom (the so-called st-molecule) enabling such systems to be classified on three-dimensional constant-energy surfaces up to orientation-preserving diffeomorphisms taking trajectories into trajectories.
@article{SM_1995_186_3_a2,
author = {S. I. Dudov},
title = {Directional differentiability of the distance function},
journal = {Sbornik. Mathematics},
pages = {337--358},
publisher = {mathdoc},
volume = {186},
number = {3},
year = {1995},
language = {en},
url = {http://geodesic.mathdoc.fr/item/SM_1995_186_3_a2/}
}
S. I. Dudov. Directional differentiability of the distance function. Sbornik. Mathematics, Tome 186 (1995) no. 3, pp. 337-358. http://geodesic.mathdoc.fr/item/SM_1995_186_3_a2/