Directional differentiability of the distance function
Sbornik. Mathematics, Tome 186 (1995) no. 3, pp. 337-358

Voir la notice de l'article provenant de la source Math-Net.Ru

In this paper we construct an invariant of integrable Hamiltonian systems with two degrees of freedom (the so-called st-molecule) enabling such systems to be classified on three-dimensional constant-energy surfaces up to orientation-preserving diffeomorphisms taking trajectories into trajectories.
@article{SM_1995_186_3_a2,
     author = {S. I. Dudov},
     title = {Directional differentiability of the distance function},
     journal = {Sbornik. Mathematics},
     pages = {337--358},
     publisher = {mathdoc},
     volume = {186},
     number = {3},
     year = {1995},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_1995_186_3_a2/}
}
TY  - JOUR
AU  - S. I. Dudov
TI  - Directional differentiability of the distance function
JO  - Sbornik. Mathematics
PY  - 1995
SP  - 337
EP  - 358
VL  - 186
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SM_1995_186_3_a2/
LA  - en
ID  - SM_1995_186_3_a2
ER  - 
%0 Journal Article
%A S. I. Dudov
%T Directional differentiability of the distance function
%J Sbornik. Mathematics
%D 1995
%P 337-358
%V 186
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SM_1995_186_3_a2/
%G en
%F SM_1995_186_3_a2
S. I. Dudov. Directional differentiability of the distance function. Sbornik. Mathematics, Tome 186 (1995) no. 3, pp. 337-358. http://geodesic.mathdoc.fr/item/SM_1995_186_3_a2/