Directional differentiability of the distance function
Sbornik. Mathematics, Tome 186 (1995) no. 3, pp. 337-358 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

In this paper we construct an invariant of integrable Hamiltonian systems with two degrees of freedom (the so-called st-molecule) enabling such systems to be classified on three-dimensional constant-energy surfaces up to orientation-preserving diffeomorphisms taking trajectories into trajectories.
@article{SM_1995_186_3_a2,
     author = {S. I. Dudov},
     title = {Directional differentiability of the distance function},
     journal = {Sbornik. Mathematics},
     pages = {337--358},
     year = {1995},
     volume = {186},
     number = {3},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_1995_186_3_a2/}
}
TY  - JOUR
AU  - S. I. Dudov
TI  - Directional differentiability of the distance function
JO  - Sbornik. Mathematics
PY  - 1995
SP  - 337
EP  - 358
VL  - 186
IS  - 3
UR  - http://geodesic.mathdoc.fr/item/SM_1995_186_3_a2/
LA  - en
ID  - SM_1995_186_3_a2
ER  - 
%0 Journal Article
%A S. I. Dudov
%T Directional differentiability of the distance function
%J Sbornik. Mathematics
%D 1995
%P 337-358
%V 186
%N 3
%U http://geodesic.mathdoc.fr/item/SM_1995_186_3_a2/
%G en
%F SM_1995_186_3_a2
S. I. Dudov. Directional differentiability of the distance function. Sbornik. Mathematics, Tome 186 (1995) no. 3, pp. 337-358. http://geodesic.mathdoc.fr/item/SM_1995_186_3_a2/

[1] Pshenichnyi B. N., Vypuklyi analiz i ekstremalnye zadachi, Nauka, M., 1980 | MR

[2] Demyanov V. F., Vasilev L. V., Nedifferentsiruemaya optimizatsiya, Nauka, M., 1981 | MR

[3] Demyanov V. F., Rubinov A. M., Osnovy negladkogo analiza i kvazidifferentsialnoe ischislenie, Nauka, M., 1990 | MR

[4] Klark F., Optimizatsiya i negladkii analiz, Nauka, M., 1988 | MR | Zbl

[5] Ioffe A. D., Tikhomirov V. M., Teoriya ekstremalnykh zadach, Nauka, M., 1974 | MR | Zbl

[6] Demyanov V. F., Malozemov V. N., Vvedenie v minimaks, Nauka, M., 1972 | MR

[7] Demyanov V. F., Minimaks: differentsiruemost po napravleniyam, Izd-vo LGU, L., 1974 | MR

[8] Pshenichnyi B. N., Kirilyuk V. S., “O differentsiruemosti funktsii minimuma so svyazannymi ogranicheniyami”, Kibernetika, 1985, no. 1, 123–125 | MR

[9] Rubinov A. M., “Sopryazhennaya proizvodnaya mnogoznachnogo otobrazheniya i differentsiruemost maksimuma pri svyazannykh ogranicheniyakh”, Sib. matem. zhurn., 26:3 (1985), 147–155 | MR | Zbl

[10] Gorokhovik V. V., Kvazidifferentsiruemost i usloviya lokalnogo ekstremuma dlya veschestvennoznachnykh funktsii, Preprint No 24 (149) In-ta matem. AN BSSR, 1982

[11] Minchenko L. I., “O differentsirovanii po napravleniyam marginalnykh funktsii v zadachakh matematicheskogo programmirovaniya”, Kibernetika i sistemnyi analiz, 1991, no. 6, 70–77 | MR | Zbl