Topological properties of extreme points of convex compact sets in $\ell^2$
Sbornik. Mathematics, Tome 186 (1995) no. 3, pp. 327-336 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

Under certain restrictions on given sets $M$ and $K$, where $M\subset K$ and $K$ is a metric compact set, a continuous map $\varepsilon\colon K\to\ell^2$ is constructed such that $\operatorname{ext}\operatorname{conv}\varepsilon(K)=\varepsilon(M)$ and the restriction of $\varepsilon$ to $M$ is a topological embedding. Here $\operatorname{ext}$ is the set of extreme points and $\operatorname{conv}$ is the closed convex hull.
@article{SM_1995_186_3_a1,
     author = {E. M. Bronshtein},
     title = {Topological properties of extreme points of convex compact sets in $\ell^2$},
     journal = {Sbornik. Mathematics},
     pages = {327--336},
     year = {1995},
     volume = {186},
     number = {3},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_1995_186_3_a1/}
}
TY  - JOUR
AU  - E. M. Bronshtein
TI  - Topological properties of extreme points of convex compact sets in $\ell^2$
JO  - Sbornik. Mathematics
PY  - 1995
SP  - 327
EP  - 336
VL  - 186
IS  - 3
UR  - http://geodesic.mathdoc.fr/item/SM_1995_186_3_a1/
LA  - en
ID  - SM_1995_186_3_a1
ER  - 
%0 Journal Article
%A E. M. Bronshtein
%T Topological properties of extreme points of convex compact sets in $\ell^2$
%J Sbornik. Mathematics
%D 1995
%P 327-336
%V 186
%N 3
%U http://geodesic.mathdoc.fr/item/SM_1995_186_3_a1/
%G en
%F SM_1995_186_3_a1
E. M. Bronshtein. Topological properties of extreme points of convex compact sets in $\ell^2$. Sbornik. Mathematics, Tome 186 (1995) no. 3, pp. 327-336. http://geodesic.mathdoc.fr/item/SM_1995_186_3_a1/

[1] Lindenstrauss J., Phelps R. P., “Extreme points properties”, Isr. J. Math., 13 (6) (1968), 39–48 | DOI | MR

[2] Lazar A. J., “Extreme boundaries of convex bodies in $\ell ^2$”, Isr. J. Math., 20 (3–4) (1975), 369–374 | DOI | MR | Zbl

[3] Stacey P. J., “Choquet simplicies with prescribed boundaries”, Quart J. Math., 30 (120) (1979), 469–482 | DOI | MR | Zbl

[4] Bronshtein E. M., “O topologicheskikh svoistvakh ekstremalnykh granits vypuklykh kompaktov v $\ell ^2$”, Funktsion. analiz i pril., 19(1) (1985), 60–61 | MR

[5] Bronshtein E. M., “O krainikh tochkakh vypuklykh kompaktov v $\ell ^2$”, Sib. matem. zhurn., 26 (1) (1985), 204–206 | MR

[6] Bronshtein E. M., “O vypuklykh kompaktakh s zadannymi krainimi tochkami”, DAN, 336:3 (1994), 295–296 | MR

[7] Bronshtein E. M., “Ob odnomernykh ekstremalnykh granitsakh trekhmernykh vypuklykh kompaktov”, Optimizatsiya, 1992, no. 51 (68), 34–46 | MR

[8] Bronshtein E. M., “Ob ekstremalnykh granitsakh konechnomernykh vypuklykh kompaktov”, Optimizatsiya, 1981, no. 26 (43), 119–128 | MR

[9] Edvards R., Funktsionalnyi analiz, Mir, M., 1969

[10] Kuratovskii K., Topologiya, T. 2, Mir, M., 1969 | MR

[11] Felps R., Lektsii o teoremakh Shoke, Mir, M., 1968

[12] Bronshtein E. M., “O vypuklykh kompaktakh s zadannymi krainimi tochkami”, Sib. matem. zhurn., 36:1 (1995), 20–27 | MR | Zbl