Chaotic and strange attractors of a two-dimensional map
Sbornik. Mathematics, Tome 186 (1995) no. 3, pp. 311-326 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

A family of continuous, invertible standard maps of the torus, cylinder and plane is considered in this paper. Sequences of bifurcations are studied which correspond to the transformation of an invariant curve to chaotic and strange attractors. The characteristic variations of complicated attractors are considered. Hyperbolicity conditions are obtained for the case of piecewise-smooth maps. The maps generating the Henon, Lozi, Belykh attractors belong to our class of standard maps.
@article{SM_1995_186_3_a0,
     author = {V. N. Belykh},
     title = {Chaotic and strange attractors of a~two-dimensional map},
     journal = {Sbornik. Mathematics},
     pages = {311--326},
     year = {1995},
     volume = {186},
     number = {3},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_1995_186_3_a0/}
}
TY  - JOUR
AU  - V. N. Belykh
TI  - Chaotic and strange attractors of a two-dimensional map
JO  - Sbornik. Mathematics
PY  - 1995
SP  - 311
EP  - 326
VL  - 186
IS  - 3
UR  - http://geodesic.mathdoc.fr/item/SM_1995_186_3_a0/
LA  - en
ID  - SM_1995_186_3_a0
ER  - 
%0 Journal Article
%A V. N. Belykh
%T Chaotic and strange attractors of a two-dimensional map
%J Sbornik. Mathematics
%D 1995
%P 311-326
%V 186
%N 3
%U http://geodesic.mathdoc.fr/item/SM_1995_186_3_a0/
%G en
%F SM_1995_186_3_a0
V. N. Belykh. Chaotic and strange attractors of a two-dimensional map. Sbornik. Mathematics, Tome 186 (1995) no. 3, pp. 311-326. http://geodesic.mathdoc.fr/item/SM_1995_186_3_a0/

[1] Belykh V. N., Chua L. O., “A New Type of Strange Attractor Related to the Chua's Circuit”, Journal of Circuits, Systems, and Computers, 3:2 (1993), 361–374 | DOI | MR

[2] Shil'nikov L. P., “Strange Attractors and Models”, Journal of Circuits, 3:1 (1993), 1–10 | DOI | MR

[3] Chiricov B. N., “A universal instability of manydimensional oscillator systems”, Phys. Repts., 52:5 (1979), 263 | DOI

[4] Sinai Ya. G., “Stokhastichnost gladkikh dinamicheskikh sistem. Elementy teorii KAM”, Itogi nauki i tekhniki. Sovremennye problemy matematiki. Fundamentalnye napravleniya, 2, 115–122

[5] Belyustina L. N., Belykh V. N., “Kachestvennoe issledovanie dinamicheskoi sistemy na tsilindre”, Differents. uravneniya, 9:3 (1973), 403–415 | Zbl

[6] Belykh V. N., “O modelyakh sistem fazovoi sinkhronizatsii i ikh issledovanii”, Dinamika sistem, Mezhvuz. sb., no. 11, Izd-vo GGU, Gorkii, 1976, 23–32 | MR

[7] Sharkovskii A. N., “Sosuschestvovanie tsiklov nepreryvnogo otobrazheniya pryamoi v sebya”, Ukr. matem. zhurn., 1964

[8] Yakobson M. V., “O gladkikh otobrazheniyakh okruzhnosti”, Matem. sb., 85 (127) (1971), 163–185

[9] Kosyakin A. A., Sandler E. A., “Ergodicheskie svoistva odnogo klassa kusochno-gladkikh preobrazovanii otrezka”, Izv. VUZov. Matematika, 1972, no. 3, 32

[10] Belykh V. N., Lebedeva L. V., “Issledovanie odnogo otobrazheniya okruzhnosti”, PMM, 46:5 (1982), 771–776 | MR

[11] Belykh V. N., Kachestvennye metody teorii nelineinykh kolebanii sosredotochennykh sistem, Uchebnoe posobie, Izd-vo GGU, Gorkii, 1980 | Zbl

[12] Belykh V. N., “O kachestvennykh strukturakh i bifurkatsiyakh nekotorykh konkretnykh dinamicheskikh sistem”, IX Mezhdunarodnaya konferentsiya po nelineinym kolebaniyam, T. 2. Kachestvennye metody, Naukova dumka, Kiev, 1984, 45–48 | MR

[13] Akimov V. N., Belyustina L. N., Belykh V. N. i dr., Sistemy fazovoi sinkhronizatsii, eds. Shakhgildyan V. V., Belyustina L. N., Radio i svyaz, M., 1982

[14] Sinai Ya. G., “Konechnomernaya sluchainost”, UMN, 46:3 (1991), 147–159 | MR | Zbl

[15] Sataev E. A., “Invariantnye mery dlya giperbolicheskikh otobrazhenii s osobennostyami”, UMN, 47:1 (1992), 147–202 | MR | Zbl

[16] Sataev E. A., “Ergodic properties of the Belykh map”, Intern. J. Chaos (to appear) | Zbl

[17] Belykh V. N., Zheleznyak I. L., “O strukture i razmernosti strannogo attraktora kusochno-lineinogo otobrazheniya tsilindra”, Metody kachestvennoi teorii i teorii bifurkatsii, Mezhvuz. sb., ed. L. P. Shilnikov, NNGU, N. Novgorod, 1991, 18–25 | MR

[18] Afraimovich V. S., Shilnikov L. P., “Printsip koltsa v zadache o vzaimodeistvii dvukh avtokolebatelnykh sistem”, PMM, 41:4 (1977), 618–627 | MR | Zbl

[19] Afraimovich V. S., Bykov V. V., Shilnikov L. P., “O strukturno ustoichivykh prityagivayuschikh predelnykh mnozhestvakh tipa attraktora Lorentsa”, Tr. MMO, URSS, M., 1983, 153–216 | Zbl

[20] Newhouse S. E., “The abundance of wild hyperbolic sets and nonsmooth stable sets for diffeomorphisms”, Publ. Math. IHES, 50 (1972), 101–151 | MR

[21] Gonchenko S. V., Turaev D. V., Shilnikov L. P., “O suschestvovanii oblastei nyukhausa v okrestnosti sistem s negruboi gomoklinicheskoi krivoi Puankare (mnogomernyi sluchai)”, DAN, 329:4 (1993), 404–407 | MR | Zbl

[22] Henon M., “A two-dimensional mappings with a strange attractor”, Commun. Math. Phys., 50:1 (1976), 69–77 | DOI | MR

[23] Lozi R., “Un attracteur de Henon”, J. Phys., 39. Coll. C5 (1978), 9–10

[24] Chua L. O., Komuro M., Matsumoto T., “The doudle scroll family. I; II”, IEEE Trans. Circuits and Systems, CAS-33, 1072–1118 | MR | Zbl