Rotation function for integrable problems reducing to the Abel equations. Orbital classification of Goryachev–Chaplygin systems.
Sbornik. Mathematics, Tome 186 (1995) no. 2, pp. 271-296 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

The rotation vector, one of the most important orbital invariants of integrable Hamiltonian systems with two degrees of freedom, is constructed using the rotation function (see [1]). A general theory of computation of the rotation functions for dynamical systems reducing to the Abel equations is developed. Using this theory, an explicit formula for the rotation function in the Goryachev–Chaplygin case in the dynamics of heavy rigid bodies is obtained. The orbital classification of the family of Goryachev–Chaplygin systems for different values of energy is presented. For this purpose the orbital Fomenko–Bolsinov invariant, which is the classifying object, is computed. The orbital non-equivalence of the Goryachev–Chaplygin flows on surfaces of equal energy corresponding to different energy levels is established as a result of an analytic study and computer analysis (together with S. Takahasi, Japan) . In addition, explicit formulae for the transition from the coordinate system on the Jacobian (the Abelian variables) to the Euler–Poisson coordinate system in the Goryachev–Chaplygin case are obtained and the covering of the Jacobian by the Liouville torus is studied. This can be used for finding an explicit solution to the Goryachev–Chaplygin problem in terms of two-dimensional theta functions.
@article{SM_1995_186_2_a6,
     author = {O. E. Orel},
     title = {Rotation function for integrable problems reducing to {the~Abel} equations. {Orbital} classification of {Goryachev{\textendash}Chaplygin} systems.},
     journal = {Sbornik. Mathematics},
     pages = {271--296},
     year = {1995},
     volume = {186},
     number = {2},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_1995_186_2_a6/}
}
TY  - JOUR
AU  - O. E. Orel
TI  - Rotation function for integrable problems reducing to the Abel equations. Orbital classification of Goryachev–Chaplygin systems.
JO  - Sbornik. Mathematics
PY  - 1995
SP  - 271
EP  - 296
VL  - 186
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/SM_1995_186_2_a6/
LA  - en
ID  - SM_1995_186_2_a6
ER  - 
%0 Journal Article
%A O. E. Orel
%T Rotation function for integrable problems reducing to the Abel equations. Orbital classification of Goryachev–Chaplygin systems.
%J Sbornik. Mathematics
%D 1995
%P 271-296
%V 186
%N 2
%U http://geodesic.mathdoc.fr/item/SM_1995_186_2_a6/
%G en
%F SM_1995_186_2_a6
O. E. Orel. Rotation function for integrable problems reducing to the Abel equations. Orbital classification of Goryachev–Chaplygin systems.. Sbornik. Mathematics, Tome 186 (1995) no. 2, pp. 271-296. http://geodesic.mathdoc.fr/item/SM_1995_186_2_a6/

[1] Bolsinov A. V., Fomenko A. T., “Traektornaya ekvivalentnost integriruemykh gamiltonovykh sistem s dvumya stepenyami svobody. Teorema klassifikatsii. I; II”, Matem. sb., 185:4 (1994), 27–80 ; 5, 27–78 | MR | Zbl

[2] Bolsinov A. V., Matveev S. V., Fomenko A. T., “Topologicheskaya klassifikatsiya prostykh integriruemykh gamiltonovykh sistem s dvumya stepenyami svobody. Spisok sistem maloi slozhnosti”, UMN, 45:2 (1990), 49–78 | MR

[3] Dubrovin B. A., Rimanovy poverkhnosti i nelineinye uravneniya, Chast I, Izd-vo MGU, M., 1986 | Zbl

[4] Dubrovin B. A., “Teta-funktsii i nelineinye uravneniya”, UMN, 36:2 (1981), 11–80 | MR

[5] Kozlov V. V., Metody kachestvennogo analiza v dinamike tverdogo tela, Izd-vo MGU, M., 1980 | MR | Zbl

[6] Oshemkov A. A., “Fomenko invariants for the main integrable cases of the rigid body motion equation”, Adv. in Sov. Math., 4 (1991), 67–146 | MR

[7] Kharlamov M. P., Topologicheskii analiz integriruemykh zadach dinamiki tverdogo tela, Izd-vo LGU, L., 1988 | MR

[8] Bolsinov A. V., Fomenko A. T., “Traektornaya klassifikatsiya prostykh integriruemykh gamiltonovykh sistem na trekhmernykh poverkhnostyakh postoyannoi energii”, DAN, 332:5 (1993), 553–555 | MR | Zbl

[9] Bechlivanidis C., van Moerbeke P., “The Goryachev–Chaplygin Top and the Toda Lattice”, Commun. Math. Phys., 110 (1987), 317–324 | DOI | MR | Zbl

[10] Gavrilov L. N., “Explicit solutions of the Goryachev–Chaplygin top”, Dokl. Bolgarskoi akademii nauk, 40:4 (1987), 19–22 | MR | Zbl