Multidimensional analogue of a theorem of Privalov
Sbornik. Mathematics, Tome 186 (1995) no. 2, pp. 257-269 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

A criterion is established for the continuity of functions that are conjugate in the sense of Cesari to a given function in the class $$ H\bigl(\omega_j(\delta),j\in B,T^N\bigr)=\bigl\{f\in C(T^N):\omega_j(f,\delta) =O[\omega_j(\delta)],\ j\in B\bigr\}, $$ where $B\subseteq M=\{1,\dots,N\}$, $T^N=(-\pi,\pi )^N$, $\omega_j(f,\delta)$ ($1\leqslant j\leqslant N$) are the partial moduli of continuity of $f(\bar x)$ and $\omega_j(\delta)$ ($j\in B$) are moduli of continuity. Best possible estimates of the partial modulus of continuity of a function conjugate to $f\in H(\omega _j,j\in M,T^N)$ are obtained in the case when the $\omega_j(\delta)$ ($j\in M$) satisfy two specific conditions. These conditions on the modulus of continuity $\omega(\delta)$ are shown to be necessary and sufficient in order that the conjugation operator violate the invariance of the class $H$ $(\omega_j=\omega,j\in M,T^N)$ in the same way as it violates that of $\operatorname{Lip}\bigl(\alpha,C(T^N)\bigr)$ ($0<\alpha<1$).
@article{SM_1995_186_2_a5,
     author = {V. A. Okulov},
     title = {Multidimensional analogue of a~theorem of {Privalov}},
     journal = {Sbornik. Mathematics},
     pages = {257--269},
     year = {1995},
     volume = {186},
     number = {2},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_1995_186_2_a5/}
}
TY  - JOUR
AU  - V. A. Okulov
TI  - Multidimensional analogue of a theorem of Privalov
JO  - Sbornik. Mathematics
PY  - 1995
SP  - 257
EP  - 269
VL  - 186
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/SM_1995_186_2_a5/
LA  - en
ID  - SM_1995_186_2_a5
ER  - 
%0 Journal Article
%A V. A. Okulov
%T Multidimensional analogue of a theorem of Privalov
%J Sbornik. Mathematics
%D 1995
%P 257-269
%V 186
%N 2
%U http://geodesic.mathdoc.fr/item/SM_1995_186_2_a5/
%G en
%F SM_1995_186_2_a5
V. A. Okulov. Multidimensional analogue of a theorem of Privalov. Sbornik. Mathematics, Tome 186 (1995) no. 2, pp. 257-269. http://geodesic.mathdoc.fr/item/SM_1995_186_2_a5/

[1] Zhizhiashvili L. V., Nekotorye voprosy mnogomernogo garmonicheskogo analiza, Izd-vo Tbil. un-ta, Tbilisi, 1983 | MR | Zbl

[2] Bari N. K., Trigonometricheskie ryady, Fizmatgiz, M., 1961 | MR

[3] Cesari L., “Sulle serie di Fourier della funzioni Lipshitziani di piu variabili”, Ann. Scula Norm. Sup. di Piza, 7 (1938), 279–295 | MR | Zbl

[4] Zhak I. E., “Po povodu odnoi teoremy L. Chezaro o sopryazhennykh funktsiyakh dvukh peremennykh”, DAN SSSR, 87:6 (1952), 877–880 | MR

[5] Lekishvili M. M., “O sopryazhennykh funktsiyakh mnogikh peremennykh v klasse $\operatorname{Lip}\alpha$”, Matem. zametki, 23:3 (1978), 361–372 | MR | Zbl

[6] Ulyanov P. L., “O nekotorykh ekvivalentnykh usloviyakh skhodimosti ryadov i integralov”, UMN, 8:6 (1953), 133–141 | MR | Zbl

[7] Bari N. K., “O nailuchshem priblizhenii trigonometricheskimi polinomami dvukh sopryazhennykh funktsii”, Izv. AN SSSR. Ser. matem., 19 (1955), 285–302 | MR | Zbl

[8] Bari N. K., “O lokalnom nailuchshem priblizhenii periodicheskikh funktsii trigonometricheskimi polinomami”, Uchenye zapiski MGU. Ser. matem., 181 (1956), 107–138 | MR

[9] Bari N. K., Stechkin S. B., “Nailuchshie priblizheniya i differentsialnye svoistva dvukh sopryazhennykh funktsii”, Tr. MMO, 5, URSS, M., 1956, 483–522 | MR | Zbl

[10] Ulyanov P. L., “O preobrazovaniyakh koeffitsientov Fure–Khaara”, DAN, 333:2 (1993), 157–160 | MR | Zbl

[11] Zigmund A., Trigonometricheskie ryady, T. I, Mir, M., 1965 | MR

[12] Pandzhikidze L. K., “Skhodimost kratnykh sopryazhennykh trigonometricheskikh ryadov v prostranstve $C(\mathbb R_n)$ i nepreryvnost sopryazhennykh funktsii mnogikh peremennykh”, Soobsch. AN GSSR, 132:3 (1988), 481–483 | MR | Zbl

[13] Nikolskii S. M., “Ryady Fure funktsii s dannym modulem nepreryvnosti”, DAN SSSR, 52 (1946), 191–194 | MR