Measurability of representations of locally compact groups
Sbornik. Mathematics, Tome 186 (1995) no. 2, pp. 245-255 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

It is shown that a locally compact group is discrete if and only if all its irreducible unitary representations are weakly Haar-measurable. Furthermore, it is proved that an Abelian locally compact group is discrete if and only if all its characters are measurable. Similar results are obtained for complete Abelian groups and generalized loop groups.
@article{SM_1995_186_2_a4,
     author = {S. V. Lyudkovskii},
     title = {Measurability of representations of locally compact groups},
     journal = {Sbornik. Mathematics},
     pages = {245--255},
     year = {1995},
     volume = {186},
     number = {2},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_1995_186_2_a4/}
}
TY  - JOUR
AU  - S. V. Lyudkovskii
TI  - Measurability of representations of locally compact groups
JO  - Sbornik. Mathematics
PY  - 1995
SP  - 245
EP  - 255
VL  - 186
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/SM_1995_186_2_a4/
LA  - en
ID  - SM_1995_186_2_a4
ER  - 
%0 Journal Article
%A S. V. Lyudkovskii
%T Measurability of representations of locally compact groups
%J Sbornik. Mathematics
%D 1995
%P 245-255
%V 186
%N 2
%U http://geodesic.mathdoc.fr/item/SM_1995_186_2_a4/
%G en
%F SM_1995_186_2_a4
S. V. Lyudkovskii. Measurability of representations of locally compact groups. Sbornik. Mathematics, Tome 186 (1995) no. 2, pp. 245-255. http://geodesic.mathdoc.fr/item/SM_1995_186_2_a4/

[1] Bichteler K., “On the existence of noncontinuous irreducible representations of locally compact group”, Invent. Math., 6 (1968), 159–162 | DOI | MR | Zbl

[2] Burbaki N., Gruppy i algebry Li, Glavy I–III, Mir, M., 1976 | MR

[3] Burbaki N., Integrirovanie, Glavy I–VIII, 1967; Наука, М., 1970

[4] Gruenberg K., “Profinite groups”, Algebraic number theory, Chapter V, eds. J. W. S. Cassels, A. Fröhlich, Academic Press, L., 1967 | MR

[5] Hewitt E., Ross K. A., Abstract harmonic analysis, V. 1, Springer-Verlag, Berlin, 1979 | MR

[6] Lyudkovskii S. V., “Klassifikatsiya nekotorykh tipov lokalno kompaktnykh grupp po ikh unitarnym predstavleniyam”, UMN, 47:5 (1992), 185–186 | MR | Zbl

[7] Montgomery D., Zippin L., Topological transformation groups, J. Wiley Sons, N.Y., 1955 | MR

[8] Naimark M. A., Normirovannye koltsa, Nauka, M., 1968 | MR | Zbl

[9] Pontryagin L. S., Nepreryvnye gruppy, Nauka, M., 1984 | MR

[10] Pressli E., Sigal G., Gruppy petel, Mir, M., 1990 | MR

[11] Engelking R., Obschaya topologiya, Mir, M., 1986 | MR

[12] Dunford N., Schwartz J. T., Linear operators, V. 1, 2, J. Wiley Sons, N.Y., 1988

[13] Kunen K., Set theory, North-Holland P.C., Amsterdam, 1980 | MR

[14] Federer G., Geometricheskaya teoriya mery, Nauka, M., 1987 | MR | Zbl

[15] Daletskii Yu. L., Fomin S. V., Mery i differentsialnye uravneniya v beskonechnomernykh prostranstvakh, Nauka, M., 1983 | MR