Measurability of representations of locally compact groups
Sbornik. Mathematics, Tome 186 (1995) no. 2, pp. 245-255

Voir la notice de l'article provenant de la source Math-Net.Ru

It is shown that a locally compact group is discrete if and only if all its irreducible unitary representations are weakly Haar-measurable. Furthermore, it is proved that an Abelian locally compact group is discrete if and only if all its characters are measurable. Similar results are obtained for complete Abelian groups and generalized loop groups.
@article{SM_1995_186_2_a4,
     author = {S. V. Lyudkovskii},
     title = {Measurability of representations of locally compact groups},
     journal = {Sbornik. Mathematics},
     pages = {245--255},
     publisher = {mathdoc},
     volume = {186},
     number = {2},
     year = {1995},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_1995_186_2_a4/}
}
TY  - JOUR
AU  - S. V. Lyudkovskii
TI  - Measurability of representations of locally compact groups
JO  - Sbornik. Mathematics
PY  - 1995
SP  - 245
EP  - 255
VL  - 186
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SM_1995_186_2_a4/
LA  - en
ID  - SM_1995_186_2_a4
ER  - 
%0 Journal Article
%A S. V. Lyudkovskii
%T Measurability of representations of locally compact groups
%J Sbornik. Mathematics
%D 1995
%P 245-255
%V 186
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SM_1995_186_2_a4/
%G en
%F SM_1995_186_2_a4
S. V. Lyudkovskii. Measurability of representations of locally compact groups. Sbornik. Mathematics, Tome 186 (1995) no. 2, pp. 245-255. http://geodesic.mathdoc.fr/item/SM_1995_186_2_a4/