Hyperbolic attractors of diffeomorphisms of orientable surfaces. Part~3. Classification algorithm
Sbornik. Mathematics, Tome 186 (1995) no. 2, pp. 221-244

Voir la notice de l'article provenant de la source Math-Net.Ru

In this third part an algorithm is described that enables us to decide, in finitely many steps, whether two attractors of a given class are topologically conjugate or not, provided that at least one code of each is known.
@article{SM_1995_186_2_a3,
     author = {A. Yu. Zhirov},
     title = {Hyperbolic attractors of diffeomorphisms of orientable surfaces. {Part~3.} {Classification} algorithm},
     journal = {Sbornik. Mathematics},
     pages = {221--244},
     publisher = {mathdoc},
     volume = {186},
     number = {2},
     year = {1995},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_1995_186_2_a3/}
}
TY  - JOUR
AU  - A. Yu. Zhirov
TI  - Hyperbolic attractors of diffeomorphisms of orientable surfaces. Part~3. Classification algorithm
JO  - Sbornik. Mathematics
PY  - 1995
SP  - 221
EP  - 244
VL  - 186
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SM_1995_186_2_a3/
LA  - en
ID  - SM_1995_186_2_a3
ER  - 
%0 Journal Article
%A A. Yu. Zhirov
%T Hyperbolic attractors of diffeomorphisms of orientable surfaces. Part~3. Classification algorithm
%J Sbornik. Mathematics
%D 1995
%P 221-244
%V 186
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SM_1995_186_2_a3/
%G en
%F SM_1995_186_2_a3
A. Yu. Zhirov. Hyperbolic attractors of diffeomorphisms of orientable surfaces. Part~3. Classification algorithm. Sbornik. Mathematics, Tome 186 (1995) no. 2, pp. 221-244. http://geodesic.mathdoc.fr/item/SM_1995_186_2_a3/