On the continuity of the solutions of a class of non-local problems for an elliptic equation
Sbornik. Mathematics, Tome 186 (1995) no. 2, pp. 197-219 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

This paper is devoted to a study of the connection between the notion of an $(n-1)$-dimensionally continuous (weak) solution for a non-local problem, which was earlier introduced by the authors, with the notion of a classical solution. Under natural suppositions on the operator entering the non-local condition, the continuity of the weak solution in the closure of the domain under consideration is proved for all arbitrary continuous boundary function. The notion of an $(n-1)$-dimensionally continuous solution is convenient when studying the Fredholm property of the problem. In the previous paper of the authors tl.e Fredholm property in such a setting was proved for a wide class of non-local problems. When studying the uniqueness it is easier to deal with a classical solution. The main result of this paper enables one, in particular, to use simultaneously the advantages of both approaches: to apply the classical maximum principle in the proof of the uniqueness (and hence, by the Fredholm property, the existence) of a weak solution.
@article{SM_1995_186_2_a2,
     author = {A. K. Gushchin and V. P. Mikhailov},
     title = {On the continuity of the~solutions of a~class of non-local problems for an~elliptic equation},
     journal = {Sbornik. Mathematics},
     pages = {197--219},
     year = {1995},
     volume = {186},
     number = {2},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_1995_186_2_a2/}
}
TY  - JOUR
AU  - A. K. Gushchin
AU  - V. P. Mikhailov
TI  - On the continuity of the solutions of a class of non-local problems for an elliptic equation
JO  - Sbornik. Mathematics
PY  - 1995
SP  - 197
EP  - 219
VL  - 186
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/SM_1995_186_2_a2/
LA  - en
ID  - SM_1995_186_2_a2
ER  - 
%0 Journal Article
%A A. K. Gushchin
%A V. P. Mikhailov
%T On the continuity of the solutions of a class of non-local problems for an elliptic equation
%J Sbornik. Mathematics
%D 1995
%P 197-219
%V 186
%N 2
%U http://geodesic.mathdoc.fr/item/SM_1995_186_2_a2/
%G en
%F SM_1995_186_2_a2
A. K. Gushchin; V. P. Mikhailov. On the continuity of the solutions of a class of non-local problems for an elliptic equation. Sbornik. Mathematics, Tome 186 (1995) no. 2, pp. 197-219. http://geodesic.mathdoc.fr/item/SM_1995_186_2_a2/

[1] Guschin A. K., Mikhailov V. P., “O razreshimosti nelokalnykh zadach dlya ellipticheskogo uravneniya vtorogo poryadka”, Matem. sb., 185:1 (1994), 121–160 | MR | Zbl

[2] Guschin A. K., Mikhailov V. P., “Usloviya fredgolmovosti odnogo klassa nelokalnykh zadach dlya ellipticheskogo uravneniya vtorogo poryadka”, DAN, 333:3 (1993), 290–292 | Zbl

[3] Guschin A. K., “O zadache Dirikhle dlya ellipticheskogo uravneniya vtorogo poryadka”, Matem. sb., 137 (179):1 (1988), 19–64 | MR

[4] Carleson L., “An interpolation problem for bounded analytic functions”, Amer. J. Math., 80 (1958), 921–930 | DOI | MR | Zbl

[5] Carleson L., “Interpolation by bounded analytic functions and the corona problem”, Ann. of Math., 76:3 (1962), 547–559 | DOI | MR | Zbl

[6] Garnet Dzh., Ogranichennye analiticheskie funktsii, Mir, M., 1984 | MR | Zbl

[7] Nikolskii N. K., Lektsii ob operatore sdviga, Nauka, M., 1980 | MR