@article{SM_1995_186_2_a1,
author = {S. K. Bloshanskaya and I. L. Bloshanskii},
title = {Generalized localization for the~multiple {Walsh{\textendash}Fourier} series of functions in $L_p$, $p\geqslant 1$},
journal = {Sbornik. Mathematics},
pages = {181--196},
year = {1995},
volume = {186},
number = {2},
language = {en},
url = {http://geodesic.mathdoc.fr/item/SM_1995_186_2_a1/}
}
TY - JOUR AU - S. K. Bloshanskaya AU - I. L. Bloshanskii TI - Generalized localization for the multiple Walsh–Fourier series of functions in $L_p$, $p\geqslant 1$ JO - Sbornik. Mathematics PY - 1995 SP - 181 EP - 196 VL - 186 IS - 2 UR - http://geodesic.mathdoc.fr/item/SM_1995_186_2_a1/ LA - en ID - SM_1995_186_2_a1 ER -
S. K. Bloshanskaya; I. L. Bloshanskii. Generalized localization for the multiple Walsh–Fourier series of functions in $L_p$, $p\geqslant 1$. Sbornik. Mathematics, Tome 186 (1995) no. 2, pp. 181-196. http://geodesic.mathdoc.fr/item/SM_1995_186_2_a1/
[1] Fine N. J., “On the Walsh functions”, Trans. Amer. Math. Soc., 65:3 (1949), 372–414 | DOI | MR | Zbl
[2] Schipp F., Wade W. R., Simon P., Pal J., Walsh series: An introduction to dyadic harmonic analysis, Akad. kiado, Budapest, 1990 | MR
[3] Golubov B. I., Efimov A. V., Skvortsov V. A., Ryady i preobrazovaniya Uolsha: Teoriya i primeneniya, Nauka, M., 1987 | MR | Zbl
[4] Tonelli L., Serie trigonometriche, Bologna, 1928
[5] Zigmund A., Trigonometricheskie ryady, T. 2, Mir, M., 1965 | MR
[6] Bloshanskii I. L., “Obobschennaya lokalizatsiya pochti vsyudu i skhodimost dvoinykh ryadov Fure”, DAN SSSR, 242:1 (1978), 11–13 | MR
[7] Bloshanskii I. L., “Ravnoskhodimost razlozhenii v kratnyi trigonometricheskii ryad Fure i integral Fure”, Matem. zametki, 18:2 (1975), 153–168 | MR
[8] Bloshanskii I. L., “O raskhodimosti ryada Fure pochti vsyudu na zadannom mnozhestve i skhodimosti k nulyu vne ego”, DAN SSSR, 280:4 (1985), 777–780 | MR
[9] Bloshanskii I. L., “Dva kriteriya slaboi obobschennoi lokalizatsii dlya kratnykh trigonometricheskikh ryadov Fure funktsii iz $L_p$, $p\geqslant 1$”, Izv. AN SSSR. Ser. matem., 49:2 (1985), 243–282 | MR
[10] Billard P., “Sur la convergence presque partout des series de Fourier–Walsh des fonctions de l'espace $L_2([\,0,1])$”, Studia Math., 28:3 (1966–1967), 363–388 | MR
[11] Hunt R., “Almost everywhere convergence of Walsh–Fourier series of $L_2$ functions”, Actes Congr. Int. Math., 2 (1970), 655–661 | MR
[12] Sjölin P., “An inequality of Paley and convergence a.e. of Walsh–Fourier series”, Arkiv för Math., 7:6 (1969), 551–570 | DOI | MR | Zbl
[13] Móricz F., “On the convergence of double orthogonal series”, Analysis Math., 2 (1976), 287–304 | DOI | MR | Zbl
[14] Bloshanskii I. L., “O kriteriyakh slaboi obobschennoi lokalizatsii v $N$-mernom prostranstve”, DAN SSSR, 271:6 (1983), 1294–1298 | MR
[15] Bloshanskii I. L., “Struktura i geometriya maksimalnykh mnozhestv skhodimosti i neogranichennoi raskhodimosti pochti vsyudu kratnykh ryadov Fure funktsii iz $L_1$, ravnykh nulyu na zadannom mnozhestve”, Izv. AN SSSR. Ser. matem., 53:4 (1989), 675–707
[16] Stein E. M., “On limits of sequences of operators”, Ann. Math., 74:1 (1961), 140–170 | DOI | MR | Zbl
[17] Getsadze R. D., “Nepreryvnaya funktsiya s raskhodyaschimsya pochti vsyudu kratnym ryadom Fure po sisteme Uolsha–Peli”, Matem. sb., 128:2 (1985), 269–286 | MR