Belt bodies and Helly dimension
Sbornik. Mathematics, Tome 186 (1995) no. 2, pp. 163-180 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

A new class of convex bodies (called belt bodies) is introduced in this paper. Support properties of zonoids are investigated in order to introduce them. It is established that all zonoids are belt bodies; however, the class of bodies introduced is essentially broader than the class of zonoids. A complete solution of the problem of classifying belt bodies according to Helly dimension is given. Namely, a belt body has Helly dimension not exceeding $n$ if and only if it can be represented as a direct vector sum of convex sets with (topological) dimension not exceeding $n$.
@article{SM_1995_186_2_a0,
     author = {\`E. D. Baladze and V. G. Boltyanskii},
     title = {Belt bodies and {Helly} dimension},
     journal = {Sbornik. Mathematics},
     pages = {163--180},
     year = {1995},
     volume = {186},
     number = {2},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_1995_186_2_a0/}
}
TY  - JOUR
AU  - È. D. Baladze
AU  - V. G. Boltyanskii
TI  - Belt bodies and Helly dimension
JO  - Sbornik. Mathematics
PY  - 1995
SP  - 163
EP  - 180
VL  - 186
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/SM_1995_186_2_a0/
LA  - en
ID  - SM_1995_186_2_a0
ER  - 
%0 Journal Article
%A È. D. Baladze
%A V. G. Boltyanskii
%T Belt bodies and Helly dimension
%J Sbornik. Mathematics
%D 1995
%P 163-180
%V 186
%N 2
%U http://geodesic.mathdoc.fr/item/SM_1995_186_2_a0/
%G en
%F SM_1995_186_2_a0
È. D. Baladze; V. G. Boltyanskii. Belt bodies and Helly dimension. Sbornik. Mathematics, Tome 186 (1995) no. 2, pp. 163-180. http://geodesic.mathdoc.fr/item/SM_1995_186_2_a0/

[1] Baladze E. D., “Polnoe reshenie problemy Sekefalvi-Nadya dlya zonoedrov”, DAN SSSR, 291:2 (1986), 269–272 | MR

[2] Baladze E. D., “Reshenie problemy Sekefalvi-Nadya dlya zonoidov”, DAN SSSR, 310:1 (1990), 11–14 | MR | Zbl

[3] Martini H., “Some results and problems around Zonotopes”, Colloq. Math. Soc. Bolyai, 48, Institute geometry, Siófok, 1985, 383–418 | MR

[4] Boltyanskii V. G., Soltan P. S., “Reshenie problemy Khadvigera dlya odnogo klassa vypuklykh tel”, DAN SSSR, 313:3 (1990), 528–532 | MR | Zbl

[5] Boltjanski V. G., Soltan P. S., “A solution of Hadwiger's Covering problem for zonoids”, Combinatorics, 12 (4) (1992), 381–388 | DOI | MR | Zbl

[6] Zalgaller V. A., Reshetnyak Yu. G., “O spryamlyaemykh krivykh, additivnykh vektor-funktsiyakh i smeschenii otrezkov”, Vestn. LGU. Ser. matem., fizika, khimiya, 9:2 (1954), 45–67 | MR

[7] Baladze E., “A solution of the Szökefalvi-Nagy problem for belt-polytopes”, Mathematicae Dedicata (to appear)

[8] Saks S., Teoriya integrala, IL, M., 1949

[9] Natanson I. P., Teoriya funktsii veschestvennoi peremennoi, 2-e izd., Nauka, M., 1957 | MR

[10] Soltan P. S., “Razmernost Khelli $d$-vypuklykh mnozhestv”, DAN SSSR, 205:3 (1972), 537–539 | MR | Zbl

[11] Szökefalvi-Nagy B., “Ein Satz über Parallelverschiebungen Konvexer Körper”, Acta Sci. Math., 15 (1954), 169–177 | MR

[12] Boltyanski V. G., “A new step in the solution of the Szökefalvi-Nagy Problem”, Discrete and Comput. Geometry, 8 (1992), 27–49 | DOI | MR | Zbl

[13] Boltyanskii V. G., Chabukiani T. A., “Reshenie problemy Sekefalvi-Nadya dlya trekhmernykh vypuklykh tel”, DAN SSSR, 279:5 (1984), 1033–1035 | MR | Zbl

[14] Kincses J., “The classification of 3- and 4-Helly dimensional Convex bodies”, Geometriae Dedicata, 22 (1987), 283–301 | DOI | MR | Zbl

[15] Boltyanskii V. G., “O nekotorykh klassakh vypuklykh mnozhestv”, DAN SSSR, 226:1 (1976), 19–22 | MR | Zbl

[16] Boltyanskii V. G., “Teorema Khelli dlya $H$-vypuklykh mnozhestv”, DAN SSSR, 226:2 (1976), 249–252 | MR | Zbl

[17] Boltyanskii V. G., “Obobschenie odnoi teoremy Sekefalvi-Nadya”, DAN SSSR, 228:2 (1976), 265–268 | MR | Zbl

[18] Boltyanskii V. G., Soltan P. S., “Kombinatornaya geometriya i klassy vypuklosti”, UMN, 33:1 (1978), 3–42 | MR | Zbl

[19] Boltyanskii V. G., Soltan P. S., Kombinatornaya geometriya razlichnykh klassov vypuklykh mnozhestv, Shtiintsa, Kishinev, 1977 | MR

[20] Givalevich R., “$\operatorname {md}H=\operatorname {md}\overline {H}$”, Publ. Inst. Math., 26 (1979), 307–311 | MR

[21] Baladze E. D., Boltyanskii V. G., Chabukiani T. A., “Novye rezultaty po probleme Sekefalvi-Nadya”, Topologicheskie, proektivnye i kombinatornye svoistva prostranstv, Tr. Tbilisskogo matem. instituta im. A. M. Razmadze, Metsniereba, Tbilisi, 1987, 3–16 | MR