Belt bodies and Helly dimension
Sbornik. Mathematics, Tome 186 (1995) no. 2, pp. 163-180

Voir la notice de l'article provenant de la source Math-Net.Ru

A new class of convex bodies (called belt bodies) is introduced in this paper. Support properties of zonoids are investigated in order to introduce them. It is established that all zonoids are belt bodies; however, the class of bodies introduced is essentially broader than the class of zonoids. A complete solution of the problem of classifying belt bodies according to Helly dimension is given. Namely, a belt body has Helly dimension not exceeding $n$ if and only if it can be represented as a direct vector sum of convex sets with (topological) dimension not exceeding $n$.
@article{SM_1995_186_2_a0,
     author = {\`E. D. Baladze and V. G. Boltyanskii},
     title = {Belt bodies and {Helly} dimension},
     journal = {Sbornik. Mathematics},
     pages = {163--180},
     publisher = {mathdoc},
     volume = {186},
     number = {2},
     year = {1995},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_1995_186_2_a0/}
}
TY  - JOUR
AU  - È. D. Baladze
AU  - V. G. Boltyanskii
TI  - Belt bodies and Helly dimension
JO  - Sbornik. Mathematics
PY  - 1995
SP  - 163
EP  - 180
VL  - 186
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SM_1995_186_2_a0/
LA  - en
ID  - SM_1995_186_2_a0
ER  - 
%0 Journal Article
%A È. D. Baladze
%A V. G. Boltyanskii
%T Belt bodies and Helly dimension
%J Sbornik. Mathematics
%D 1995
%P 163-180
%V 186
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SM_1995_186_2_a0/
%G en
%F SM_1995_186_2_a0
È. D. Baladze; V. G. Boltyanskii. Belt bodies and Helly dimension. Sbornik. Mathematics, Tome 186 (1995) no. 2, pp. 163-180. http://geodesic.mathdoc.fr/item/SM_1995_186_2_a0/