@article{SM_1995_186_2_a0,
author = {\`E. D. Baladze and V. G. Boltyanskii},
title = {Belt bodies and {Helly} dimension},
journal = {Sbornik. Mathematics},
pages = {163--180},
year = {1995},
volume = {186},
number = {2},
language = {en},
url = {http://geodesic.mathdoc.fr/item/SM_1995_186_2_a0/}
}
È. D. Baladze; V. G. Boltyanskii. Belt bodies and Helly dimension. Sbornik. Mathematics, Tome 186 (1995) no. 2, pp. 163-180. http://geodesic.mathdoc.fr/item/SM_1995_186_2_a0/
[1] Baladze E. D., “Polnoe reshenie problemy Sekefalvi-Nadya dlya zonoedrov”, DAN SSSR, 291:2 (1986), 269–272 | MR
[2] Baladze E. D., “Reshenie problemy Sekefalvi-Nadya dlya zonoidov”, DAN SSSR, 310:1 (1990), 11–14 | MR | Zbl
[3] Martini H., “Some results and problems around Zonotopes”, Colloq. Math. Soc. Bolyai, 48, Institute geometry, Siófok, 1985, 383–418 | MR
[4] Boltyanskii V. G., Soltan P. S., “Reshenie problemy Khadvigera dlya odnogo klassa vypuklykh tel”, DAN SSSR, 313:3 (1990), 528–532 | MR | Zbl
[5] Boltjanski V. G., Soltan P. S., “A solution of Hadwiger's Covering problem for zonoids”, Combinatorics, 12 (4) (1992), 381–388 | DOI | MR | Zbl
[6] Zalgaller V. A., Reshetnyak Yu. G., “O spryamlyaemykh krivykh, additivnykh vektor-funktsiyakh i smeschenii otrezkov”, Vestn. LGU. Ser. matem., fizika, khimiya, 9:2 (1954), 45–67 | MR
[7] Baladze E., “A solution of the Szökefalvi-Nagy problem for belt-polytopes”, Mathematicae Dedicata (to appear)
[8] Saks S., Teoriya integrala, IL, M., 1949
[9] Natanson I. P., Teoriya funktsii veschestvennoi peremennoi, 2-e izd., Nauka, M., 1957 | MR
[10] Soltan P. S., “Razmernost Khelli $d$-vypuklykh mnozhestv”, DAN SSSR, 205:3 (1972), 537–539 | MR | Zbl
[11] Szökefalvi-Nagy B., “Ein Satz über Parallelverschiebungen Konvexer Körper”, Acta Sci. Math., 15 (1954), 169–177 | MR
[12] Boltyanski V. G., “A new step in the solution of the Szökefalvi-Nagy Problem”, Discrete and Comput. Geometry, 8 (1992), 27–49 | DOI | MR | Zbl
[13] Boltyanskii V. G., Chabukiani T. A., “Reshenie problemy Sekefalvi-Nadya dlya trekhmernykh vypuklykh tel”, DAN SSSR, 279:5 (1984), 1033–1035 | MR | Zbl
[14] Kincses J., “The classification of 3- and 4-Helly dimensional Convex bodies”, Geometriae Dedicata, 22 (1987), 283–301 | DOI | MR | Zbl
[15] Boltyanskii V. G., “O nekotorykh klassakh vypuklykh mnozhestv”, DAN SSSR, 226:1 (1976), 19–22 | MR | Zbl
[16] Boltyanskii V. G., “Teorema Khelli dlya $H$-vypuklykh mnozhestv”, DAN SSSR, 226:2 (1976), 249–252 | MR | Zbl
[17] Boltyanskii V. G., “Obobschenie odnoi teoremy Sekefalvi-Nadya”, DAN SSSR, 228:2 (1976), 265–268 | MR | Zbl
[18] Boltyanskii V. G., Soltan P. S., “Kombinatornaya geometriya i klassy vypuklosti”, UMN, 33:1 (1978), 3–42 | MR | Zbl
[19] Boltyanskii V. G., Soltan P. S., Kombinatornaya geometriya razlichnykh klassov vypuklykh mnozhestv, Shtiintsa, Kishinev, 1977 | MR
[20] Givalevich R., “$\operatorname {md}H=\operatorname {md}\overline {H}$”, Publ. Inst. Math., 26 (1979), 307–311 | MR
[21] Baladze E. D., Boltyanskii V. G., Chabukiani T. A., “Novye rezultaty po probleme Sekefalvi-Nadya”, Topologicheskie, proektivnye i kombinatornye svoistva prostranstv, Tr. Tbilisskogo matem. instituta im. A. M. Razmadze, Metsniereba, Tbilisi, 1987, 3–16 | MR