Removable singularities of plurisubharmonic functions of class $\operatorname{Lip}_\alpha$
Sbornik. Mathematics, Tome 186 (1995) no. 1, pp. 133-150 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

The structure of singular sets of subharmonic functions satisfying a Lipschitz condition is analyzed. The following theorem is the main result of the paper. Theorem. {\it Let $E$ be a closed subset of a domain $D\subset\mathbb R^n$ such that $H_{n-2+\alpha}(E)=0$, $0\leqslant\alpha\leqslant2$. Then every function in the class $\operatorname{Lip}_\alpha(D)$ that is subharmonic in $D\setminus E$ extends subharmonically to $D$.}
@article{SM_1995_186_1_a7,
     author = {A. S. Sadullaev and Zh. R. Yarmetov},
     title = {Removable singularities of plurisubharmonic functions of class $\operatorname{Lip}_\alpha$},
     journal = {Sbornik. Mathematics},
     pages = {133--150},
     year = {1995},
     volume = {186},
     number = {1},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_1995_186_1_a7/}
}
TY  - JOUR
AU  - A. S. Sadullaev
AU  - Zh. R. Yarmetov
TI  - Removable singularities of plurisubharmonic functions of class $\operatorname{Lip}_\alpha$
JO  - Sbornik. Mathematics
PY  - 1995
SP  - 133
EP  - 150
VL  - 186
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/SM_1995_186_1_a7/
LA  - en
ID  - SM_1995_186_1_a7
ER  - 
%0 Journal Article
%A A. S. Sadullaev
%A Zh. R. Yarmetov
%T Removable singularities of plurisubharmonic functions of class $\operatorname{Lip}_\alpha$
%J Sbornik. Mathematics
%D 1995
%P 133-150
%V 186
%N 1
%U http://geodesic.mathdoc.fr/item/SM_1995_186_1_a7/
%G en
%F SM_1995_186_1_a7
A. S. Sadullaev; Zh. R. Yarmetov. Removable singularities of plurisubharmonic functions of class $\operatorname{Lip}_\alpha$. Sbornik. Mathematics, Tome 186 (1995) no. 1, pp. 133-150. http://geodesic.mathdoc.fr/item/SM_1995_186_1_a7/

[1] Karleson L., Izbrannye problemy teorii isklyuchitelnykh mnozhestv, Mir, M., 1971 | MR | Zbl

[2] Dolzhenko E. P., “O predstavlenii nepreryvnykh garmonicheskikh funktsii v vide potentsialov”, Izv. AN SSSR. Ser. matem., 28:5 (1964), 1113–1130 | MR | Zbl

[3] Dolzhenko E. P., “Ob osobykh tochkakh nepreryvnykh garmonicheskikh funktsii”, Izv. AN SSSR. Ser. matem., 28:6 (1964), 1251–1270 | MR | Zbl

[4] Uy Nguyen Xuan, “A removable set for Lipshitz harmonic functions”, Mich. Math. J., 37:1 (1990), 45–51 | DOI | MR | Zbl

[5] Frostman O., “Potentiel d'equilibre et capacite des ensembles”, Comm. Sem Math. Lind., 3 (1935), 1–118

[6] Radon I., “O lineinykh funktsionalnykh preobrazovaniyakh i funktsionalnykh uravneniyakh”, UMN, 1 (1936), 200–227

[7] Landkof N. S., Osnovy sovremennoi teorii potentsiala, Nauka, M., 1966 | MR | Zbl

[8] Kolmogorov A. N., Fomin S. V., Elementy teorii funktsii i funktsionalnogo analiza, Nauka, M., 1989 | MR

[9] Kheiman U., Kennedi P., Subgarmonicheskie funktsii, Mir, M., 1980

[10] Uy Nguyen Xuan, “Removable sets of analitic functions satisfying a Lipschitz condition”, Arc. Mat., 17 (1979), 19–27 | MR | Zbl