Bernstein type inequalities for derivatives of rational functions in $L_p$ spaces for $p1$
    
    
  
  
  
      
      
      
        
Sbornik. Mathematics, Tome 186 (1995) no. 1, pp. 121-131
    
  
  
  
  
  
    
      
      
        
      
      
      
    Voir la notice de l'article provenant de la source Math-Net.Ru
            
              			It is shown that if $r$ is a rational function of degree $n$, $0$, $1/p\notin\mathbb N$, and $r\in L_p(-1,1)$, then for any $s\in\mathbb N$
\begin{equation}
\biggl(\int _{-1}^1|r^{(s)}(x)|^\sigma\,dx\biggr)^{1/\sigma}
\leqslant cn^s\biggr(\int _{-1}^1|r(x)|^p\,dx\biggr)^{1/p},
\tag{1}
\end{equation}
where $\sigma =(s+1/p)^{-1}$ and $c>0$ depends only on $p$ and $s$. 
The problem of proving the inequality (1) was posed by Sevast'yanov in 1973. Up to the present, it has been solved for $1$. In the case $1/p\in\mathbb N$ the inequality is not valid. Some applications of (1) to problems of rational approximation are also given in this paper. Similar questions are considered for the line and circle.
			
            
            
            
          
        
      @article{SM_1995_186_1_a6,
     author = {A. A. Pekarskii and H. Stahl},
     title = {Bernstein type inequalities for derivatives of rational functions in $L_p$ spaces for $p<1$},
     journal = {Sbornik. Mathematics},
     pages = {121--131},
     publisher = {mathdoc},
     volume = {186},
     number = {1},
     year = {1995},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_1995_186_1_a6/}
}
                      
                      
                    TY - JOUR AU - A. A. Pekarskii AU - H. Stahl TI - Bernstein type inequalities for derivatives of rational functions in $L_p$ spaces for $p<1$ JO - Sbornik. Mathematics PY - 1995 SP - 121 EP - 131 VL - 186 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/SM_1995_186_1_a6/ LA - en ID - SM_1995_186_1_a6 ER -
A. A. Pekarskii; H. Stahl. Bernstein type inequalities for derivatives of rational functions in $L_p$ spaces for $p<1$. Sbornik. Mathematics, Tome 186 (1995) no. 1, pp. 121-131. http://geodesic.mathdoc.fr/item/SM_1995_186_1_a6/
