Bernstein type inequalities for derivatives of rational functions in $L_p$ spaces for $p1$
Sbornik. Mathematics, Tome 186 (1995) no. 1, pp. 121-131
Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

It is shown that if $r$ is a rational function of degree $n$, $0, $1/p\notin\mathbb N$, and $r\in L_p(-1,1)$, then for any $s\in\mathbb N$ \begin{equation} \biggl(\int _{-1}^1|r^{(s)}(x)|^\sigma\,dx\biggr)^{1/\sigma} \leqslant cn^s\biggr(\int _{-1}^1|r(x)|^p\,dx\biggr)^{1/p}, \tag{1} \end{equation} where $\sigma =(s+1/p)^{-1}$ and $c>0$ depends only on $p$ and $s$. The problem of proving the inequality (1) was posed by Sevast'yanov in 1973. Up to the present, it has been solved for $1. In the case $1/p\in\mathbb N$ the inequality is not valid. Some applications of (1) to problems of rational approximation are also given in this paper. Similar questions are considered for the line and circle.
@article{SM_1995_186_1_a6,
     author = {A. A. Pekarskii and H. Stahl},
     title = {Bernstein type inequalities for derivatives of rational functions in $L_p$ spaces for $p<1$},
     journal = {Sbornik. Mathematics},
     pages = {121--131},
     year = {1995},
     volume = {186},
     number = {1},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_1995_186_1_a6/}
}
TY  - JOUR
AU  - A. A. Pekarskii
AU  - H. Stahl
TI  - Bernstein type inequalities for derivatives of rational functions in $L_p$ spaces for $p<1$
JO  - Sbornik. Mathematics
PY  - 1995
SP  - 121
EP  - 131
VL  - 186
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/SM_1995_186_1_a6/
LA  - en
ID  - SM_1995_186_1_a6
ER  - 
%0 Journal Article
%A A. A. Pekarskii
%A H. Stahl
%T Bernstein type inequalities for derivatives of rational functions in $L_p$ spaces for $p<1$
%J Sbornik. Mathematics
%D 1995
%P 121-131
%V 186
%N 1
%U http://geodesic.mathdoc.fr/item/SM_1995_186_1_a6/
%G en
%F SM_1995_186_1_a6
A. A. Pekarskii; H. Stahl. Bernstein type inequalities for derivatives of rational functions in $L_p$ spaces for $p<1$. Sbornik. Mathematics, Tome 186 (1995) no. 1, pp. 121-131. http://geodesic.mathdoc.fr/item/SM_1995_186_1_a6/

[1] Gonchar A. A., “Obratnye teoremy o nailuchshikh priblizheniyakh na zamknutykh mnozhestvakh”, DAN SSSR, 128:1 (1959), 25–28 | MR | Zbl

[2] Dolzhenko E. P., “Otsenki proizvodnykh ratsionalnykh funktsii”, Izv. AN SSSR. Ser. matem., 27:1 (1963), 9–28 | MR | Zbl

[3] Sevastyanov E. A., “Nekotorye otsenki proizvodnykh ratsionalnykh funktsii v integralnykh metrikakh”, Matem. zametki, 13:4 (1973), 499–510 | MR | Zbl

[4] Pekarskii A. A., Pryamye i obratnye teoremy ratsionalnoi approksimatsii, Diss. ...dokt. fiz.-matem. nauk, Bibl. MGU im. M. V. Lomonosova, M., 1990

[5] Petrushev P. P., Popov V. A., Rational approximation of real functions, Cambridge University Press, 1987 | MR | Zbl

[6] Danchenko V. I., “Ob otsenkakh norm i variatsii ratsionalnykh sostavlyayuschikh meromorfnykh funktsii”, DAN SSSR, 280:5 (1985), 1043–1046 | MR | Zbl

[7] Garnet Dzh., Ogranichennye analiticheskie funktsii, Mir, M., 1984 | MR | Zbl

[8] Alexandrov A. B., “Essays on non locally convex Hardy classes”, Lect. Notes Math., no. 864, 1981, 1–89

[9] Danilyuk I. I., Neregulyarnye granichnye zadachi na ploskosti, Nauka, M., 1975 | MR

[10] Rusak V. N., Ratsionalnye funktsii kak apparat priblizheniya, Izd-vo BGU im. V. I. Lenina, Minsk, 1979 | MR