A functional model for the Lie algebra $\operatorname{ISO}(1,1)$ of linear non-self-adjoint operators
Sbornik. Mathematics, Tome 186 (1995) no. 1, pp. 79-106 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

A functional model is constructed for the Lie algebra $\operatorname{ISO}(1,1)$ of linear non-self-adjoint operators subject to the commutation relations $[A_1,A_2]=0$, $[A_1,A_3]=iA_2$, $[A_2,A_3]=iA_1$. The construction is based on a non-Abelian generalization of the Lax–Phillips scattering scheme on the group of transformations of the pseudo-Euclidean plane preserving the quadratic form $x^2-y^2$.
@article{SM_1995_186_1_a4,
     author = {V. A. Zolotarev},
     title = {A functional model for {the~Lie} algebra $\operatorname{ISO}(1,1)$ of linear non-self-adjoint operators},
     journal = {Sbornik. Mathematics},
     pages = {79--106},
     year = {1995},
     volume = {186},
     number = {1},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_1995_186_1_a4/}
}
TY  - JOUR
AU  - V. A. Zolotarev
TI  - A functional model for the Lie algebra $\operatorname{ISO}(1,1)$ of linear non-self-adjoint operators
JO  - Sbornik. Mathematics
PY  - 1995
SP  - 79
EP  - 106
VL  - 186
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/SM_1995_186_1_a4/
LA  - en
ID  - SM_1995_186_1_a4
ER  - 
%0 Journal Article
%A V. A. Zolotarev
%T A functional model for the Lie algebra $\operatorname{ISO}(1,1)$ of linear non-self-adjoint operators
%J Sbornik. Mathematics
%D 1995
%P 79-106
%V 186
%N 1
%U http://geodesic.mathdoc.fr/item/SM_1995_186_1_a4/
%G en
%F SM_1995_186_1_a4
V. A. Zolotarev. A functional model for the Lie algebra $\operatorname{ISO}(1,1)$ of linear non-self-adjoint operators. Sbornik. Mathematics, Tome 186 (1995) no. 1, pp. 79-106. http://geodesic.mathdoc.fr/item/SM_1995_186_1_a4/

[1] Sekefalvi-Nad B., Foyash Ch., Garmonicheskii analiz operatorov v gilbertovom prostranstve, Mir, M., 1970 | MR

[2] Laks P., Fillips R., Teoriya rasseyaniya, Mir, M., 1971 | MR

[3] Laks P., Fillips R., Teoriya rasseyaniya dlya avtomorfnykh funktsii, Mir, M., 1979

[4] Pavlov B. S., “Teoriya dilatatsii i spektralnyi analiz nesamosopryazhennykh differentsialnykh operatorov”, Teoriya operatorov v lineinykh prostranstvakh, Tr. sedmoi zimnei shkoly (Drogobych), Izd-vo TsEMI, 1976, 3–69 | MR

[5] Pavlov B. S., Faddeev L. D., “Teoriya rasseyaniya i avtomorfnye funktsii”, Zapiski nauch. sem. LOMI, 27, Nauka, L., 1972, 161–193 | MR | Zbl

[6] Semenov-Tyan-Shanskii M. A., “Garmonicheskii analiz na rimanovykh simmetricheskikh prostranstvakh otritsatelnoi krivizny i teoriya rasseyaniya”, Izv. AN SSSR. Ser. matem., 40:3 (1976), 562–592 | MR

[7] Zolotarev V. A., “Vremennye konusy i funktsionalnaya model rimanovoi poverkhnosti”, Matem. sb., 181:7 (1990), 965–995

[8] Zolotarev V. A., “Skhema rasseyaniya Laksa–Fillipsa na gruppakh i funktsionalnaya model algebry Li”, Matem. sb., 183:5 (1992), 115–144 | MR | Zbl

[9] Zhelobenko D. P., Shtern A. I., Predstavleniya grupp Li, Nauka, M., 1983 | MR

[10] Perelomov A. M., Obobschennye kogerentnye sostoyaniya i ikh primeneniya, Nauka, M., 1987 | MR

[11] Vilenkin N. Ya., Klimyk A. U., “Predstavleniya grupp i spetsialnye funktsii”, Itogi nauki i tekhniki. Sovr. probl. matem. Fund. napr., 59, VINITI, 1990, 145–264 | MR

[12] Vilenkin N. Ya., Spetsialnye funktsii i teoriya predstavleniya grupp, Nauka, M., 1991 | MR | Zbl

[13] Dubrovin B. Ya., Novikov S. P., Fomenko A. G., Sovremennaya geometriya: Metody i prilozheniya, Nauka, M., 1986 | MR

[14] Mizokhata S., Teoriya uravnenii s chastnymi proizvodnymi, Mir, M., 1977

[15] Godunov S. K., Uravneniya matematicheskoi fiziki, Nauka, M., 1979 | MR | Zbl

[16] Nikolskii N. K., Khruschev S. V., “Funktsionalnaya model i nekotorye zadachi spektralnoi teorii funktsii”, Matem. fizika i kompleksnyi analiz, 4, Trudy MIAN SSSR, 176, Nauka, M., 1987, 97–210 | MR | Zbl

[17] Pavlov B. S., Fedorov S. I., “Gruppa sdvigov i garmonicheskii analiz na rimanovoi poverkhnosti roda odin”, Algebra i analiz, 1:2 (1989), 132–168 | MR | Zbl

[18] Pavlov B. S., “Spektralnyi analiz dissipativnogo singulyarnogo operatora Shredingera v terminakh funktsionalnoi modeli”, Itogi nauki i tekhniki. Sovr. probl. matem. Fund. napr., 65, VINITI, M., 1991, 95–163

[19] Ostrovskii V. L., Samoilenko Yu. S., “Semeistva neogranichennykh samosopryazhennykh operatorov, svyazannykh nelievskimi sootnosheniyami”, Funkts. anal. i ego pril., 23:2 (1989), 67–68 | MR | Zbl

[20] Livshits M. S., Yantsevich A. A., Teoriya operatornykh uzlov v gilbertovykh prostranstvakh, Izd-vo Khark. un-ta, Kharkov, 1971 | MR

[21] Livsic M. S., “On Commuting nonselfadjoint operator and operators and collective motions of systems”, Lecture Notes in Mathematics, 1272, Springer-Verlag, 1987, 1–38 | MR