A functional model for the~Lie algebra $\operatorname{ISO}(1,1)$ of linear non-self-adjoint operators
Sbornik. Mathematics, Tome 186 (1995) no. 1, pp. 79-106

Voir la notice de l'article provenant de la source Math-Net.Ru

A functional model is constructed for the Lie algebra $\operatorname{ISO}(1,1)$ of linear non-self-adjoint operators subject to the commutation relations $[A_1,A_2]=0$, $[A_1,A_3]=iA_2$, $[A_2,A_3]=iA_1$. The construction is based on a non-Abelian generalization of the Lax–Phillips scattering scheme on the group of transformations of the pseudo-Euclidean plane preserving the quadratic form $x^2-y^2$.
@article{SM_1995_186_1_a4,
     author = {V. A. Zolotarev},
     title = {A functional model for {the~Lie} algebra $\operatorname{ISO}(1,1)$ of linear non-self-adjoint operators},
     journal = {Sbornik. Mathematics},
     pages = {79--106},
     publisher = {mathdoc},
     volume = {186},
     number = {1},
     year = {1995},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_1995_186_1_a4/}
}
TY  - JOUR
AU  - V. A. Zolotarev
TI  - A functional model for the~Lie algebra $\operatorname{ISO}(1,1)$ of linear non-self-adjoint operators
JO  - Sbornik. Mathematics
PY  - 1995
SP  - 79
EP  - 106
VL  - 186
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SM_1995_186_1_a4/
LA  - en
ID  - SM_1995_186_1_a4
ER  - 
%0 Journal Article
%A V. A. Zolotarev
%T A functional model for the~Lie algebra $\operatorname{ISO}(1,1)$ of linear non-self-adjoint operators
%J Sbornik. Mathematics
%D 1995
%P 79-106
%V 186
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SM_1995_186_1_a4/
%G en
%F SM_1995_186_1_a4
V. A. Zolotarev. A functional model for the~Lie algebra $\operatorname{ISO}(1,1)$ of linear non-self-adjoint operators. Sbornik. Mathematics, Tome 186 (1995) no. 1, pp. 79-106. http://geodesic.mathdoc.fr/item/SM_1995_186_1_a4/