Skew-symmetric identities in special Lie algebras
Sbornik. Mathematics, Tome 186 (1995) no. 1, pp. 65-77 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

In this paper we study the connection between a standard Lie identity and Capelli identities in Lie algebras over a field of characteristic zero. It is shown that the standard identity of degree eight implies all Capelli identities in special Lie algebras, while this is false for degree nine. It is further shown that all Capelli identities follow from a standard identity in a product of two nilpotent varieties provided that the right-hand factor is of class at most two; and that, for $n\geqslant 2$, the Lie algebra $W_n$ satisfies an identity not following from a standard identity.
@article{SM_1995_186_1_a3,
     author = {M. V. Zaicev},
     title = {Skew-symmetric identities in special {Lie} algebras},
     journal = {Sbornik. Mathematics},
     pages = {65--77},
     year = {1995},
     volume = {186},
     number = {1},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_1995_186_1_a3/}
}
TY  - JOUR
AU  - M. V. Zaicev
TI  - Skew-symmetric identities in special Lie algebras
JO  - Sbornik. Mathematics
PY  - 1995
SP  - 65
EP  - 77
VL  - 186
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/SM_1995_186_1_a3/
LA  - en
ID  - SM_1995_186_1_a3
ER  - 
%0 Journal Article
%A M. V. Zaicev
%T Skew-symmetric identities in special Lie algebras
%J Sbornik. Mathematics
%D 1995
%P 65-77
%V 186
%N 1
%U http://geodesic.mathdoc.fr/item/SM_1995_186_1_a3/
%G en
%F SM_1995_186_1_a3
M. V. Zaicev. Skew-symmetric identities in special Lie algebras. Sbornik. Mathematics, Tome 186 (1995) no. 1, pp. 65-77. http://geodesic.mathdoc.fr/item/SM_1995_186_1_a3/

[1] Kemer A. R., “Predstavimost privedenno svobodnykh algebr”, Algebra i logika, 27 (1988), 274–294 | MR | Zbl

[2] Bakhturin Yu. A., Tozhdestva v algebrakh Li, Nauka, M., 1985 | MR | Zbl

[3] Mischenko S. P., “Rost mnogoobrazii algebr Li”, UMN, 45 (1990), 25–45 | Zbl

[4] Mischenko S. P., “O standartnom tozhdestve v razreshimykh stupeni tri algebrakh Li”, Vestn. MGU. Ser. 1, matem., mekh., 1993, no. 5, 63–66 | Zbl

[5] Zaitsev M. V., “Standartnoe tozhdestvo v spetsialnykh mnogoobraziyakh algebr Li”, Vestn. MGU. Ser. 1, matem., mekh., 1993, no. 1, 56–59 | MR | Zbl

[6] Mischenko S. P., “O nekotorykh klassakh algebr Li”, Vestn. MGU. Ser. 1, matem., mekh., 1992, no. 3, 55–57 | Zbl

[7] Zaitsev M. V., “Standartnoe tozhdestvo i tozhdestva Kapelli v algebrakh Li”, UMN, 49:2 (1994), 153–154 | MR | Zbl

[8] Volichenko I. B., “Ob odnom mnogoobrazii algebr Li, svyazannom so standartnymi tozhdestvami, I”, Vesti AN BSSR, 1980, no. 1, 23–40 | MR

[9] Volichenko I. B., “Ob odnom mnogoobrazii algebr Li, svyazannom so standartnymi tozhdestvami, II”, Vesti AN BSSR, 1980, no. 2, 22–29 | MR

[10] Zaitsev M. V., “Bazisnyi rang mnogoobrazii algebr Li”, Matem. sb., 184 (326) (1993), 21–40 | MR | Zbl

[11] Vais A. Ya., “O spetsialnykh mnogoobraziyakh algebr Li”, Algebra i logika, 28 (1989), 29–40 | MR | Zbl

[12] Volichenko I. B., “Mnogoobrazie algebr Li s tozhdestvom $[[x_1x_2x_3],[x_4x_5x_6]]=0$ nad polem kharakteristiki nul”, Sib. matem. zhurn., 25 (1984), 40–54 | MR | Zbl

[13] Kagarmanov A. Ya., “Standartnyi liev polinom stepeni $8$ na algebre Li $W_2$”, Vestn. MGU. Ser. 1, matem., mekh., 1990, no. 6, 66–68 | MR | Zbl