$U$-convergence almost everywhere of double Fourier series
Sbornik. Mathematics, Tome 186 (1995) no. 1, pp. 47-64 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

In this paper we consider $u$-convergence of double Fourier series ($u$-convergence of a double number series implies that it converges in the sense of Pringsheim, over spheres, and so on.) Unextendable classes of Weyl multipliers for $u$-convergence almost everywhere are described. In addition, close to exact sufficient conditions for $u$-convergence almost everywhere in the spaces $L(T^2)$ and $L_2(T^2)$ are found.
@article{SM_1995_186_1_a2,
     author = {M. I. Dyachenko},
     title = {$U$-convergence almost everywhere of double {Fourier} series},
     journal = {Sbornik. Mathematics},
     pages = {47--64},
     year = {1995},
     volume = {186},
     number = {1},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_1995_186_1_a2/}
}
TY  - JOUR
AU  - M. I. Dyachenko
TI  - $U$-convergence almost everywhere of double Fourier series
JO  - Sbornik. Mathematics
PY  - 1995
SP  - 47
EP  - 64
VL  - 186
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/SM_1995_186_1_a2/
LA  - en
ID  - SM_1995_186_1_a2
ER  - 
%0 Journal Article
%A M. I. Dyachenko
%T $U$-convergence almost everywhere of double Fourier series
%J Sbornik. Mathematics
%D 1995
%P 47-64
%V 186
%N 1
%U http://geodesic.mathdoc.fr/item/SM_1995_186_1_a2/
%G en
%F SM_1995_186_1_a2
M. I. Dyachenko. $U$-convergence almost everywhere of double Fourier series. Sbornik. Mathematics, Tome 186 (1995) no. 1, pp. 47-64. http://geodesic.mathdoc.fr/item/SM_1995_186_1_a2/

[1] Arutyunyan F. G., “Predstavlenie funktsii kratnymi ryadami”, DAN Arm. SSR, 64:2 (1977), 72–76 | MR | Zbl

[2] Arutyunyan F. G., “Predstavlenie izmerimykh funktsii mnogikh peremennykh kratnymi trigonometricheskimi ryadami”, Matem. sb., 126:2 (1985), 267–285 | MR | Zbl

[3] Dyachenko M. I., “Nekotorye problemy teorii kratnykh trigonometricheskikh ryadov”, UMN, 47:5 (1992), 97–162 | MR | Zbl

[4] Dyachenko M. I., “$U$-skhodimost kratnykh ryadov Fure”, Izv. RAN. Seriya matem. (to appear)

[5] Sjolin P., “Convergence almost everywhere of certain singular integrals and multiple Fourier series”, Ark. mat., 9:1 (1971), 65–90 | DOI | MR

[6] Nikishin E. M., “Mnozhiteli Veilya dlya kratnykh ryadov Fure”, Matem. sb., 89:2 (1972), 340–348 | MR | Zbl

[7] Ulyanov P. L., “O nekotorykh ekvivalentnykh usloviyakh skhodimosti ryadov i integralov”, UMN, 8:6 (1953), 133–141 | MR | Zbl

[8] Golubov B. I., “O skhodimosti sfericheskikh srednikh Rissa kratnykh ryadov Fure”, Matem. sb., 96(138):2 (1975), 189–211 | MR | Zbl

[9] Nikolskii S. M., Priblizhenie funktsii mnogikh peremennykh i teoremy vlozheniya, Nauka, M., 1977 | MR

[10] Rudin W., “Some theorems on Fourier coefficients”, Proc. Amer. Math. Soc., 10 (1959), 855–859 | DOI | MR | Zbl