$U$-convergence almost everywhere of double Fourier series
Sbornik. Mathematics, Tome 186 (1995) no. 1, pp. 47-64

Voir la notice de l'article provenant de la source Math-Net.Ru

In this paper we consider $u$-convergence of double Fourier series ($u$-convergence of a double number series implies that it converges in the sense of Pringsheim, over spheres, and so on.) Unextendable classes of Weyl multipliers for $u$-convergence almost everywhere are described. In addition, close to exact sufficient conditions for $u$-convergence almost everywhere in the spaces $L(T^2)$ and $L_2(T^2)$ are found.
@article{SM_1995_186_1_a2,
     author = {M. I. Dyachenko},
     title = {$U$-convergence almost everywhere of double {Fourier} series},
     journal = {Sbornik. Mathematics},
     pages = {47--64},
     publisher = {mathdoc},
     volume = {186},
     number = {1},
     year = {1995},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_1995_186_1_a2/}
}
TY  - JOUR
AU  - M. I. Dyachenko
TI  - $U$-convergence almost everywhere of double Fourier series
JO  - Sbornik. Mathematics
PY  - 1995
SP  - 47
EP  - 64
VL  - 186
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SM_1995_186_1_a2/
LA  - en
ID  - SM_1995_186_1_a2
ER  - 
%0 Journal Article
%A M. I. Dyachenko
%T $U$-convergence almost everywhere of double Fourier series
%J Sbornik. Mathematics
%D 1995
%P 47-64
%V 186
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SM_1995_186_1_a2/
%G en
%F SM_1995_186_1_a2
M. I. Dyachenko. $U$-convergence almost everywhere of double Fourier series. Sbornik. Mathematics, Tome 186 (1995) no. 1, pp. 47-64. http://geodesic.mathdoc.fr/item/SM_1995_186_1_a2/