@article{SM_1995_186_1_a1,
author = {T. V. Girya and I. D. Chueshov},
title = {Inertial manifolds and stationary measures for stochastically perturbed dissipative dynamical systems},
journal = {Sbornik. Mathematics},
pages = {29--45},
year = {1995},
volume = {186},
number = {1},
language = {en},
url = {http://geodesic.mathdoc.fr/item/SM_1995_186_1_a1/}
}
TY - JOUR AU - T. V. Girya AU - I. D. Chueshov TI - Inertial manifolds and stationary measures for stochastically perturbed dissipative dynamical systems JO - Sbornik. Mathematics PY - 1995 SP - 29 EP - 45 VL - 186 IS - 1 UR - http://geodesic.mathdoc.fr/item/SM_1995_186_1_a1/ LA - en ID - SM_1995_186_1_a1 ER -
T. V. Girya; I. D. Chueshov. Inertial manifolds and stationary measures for stochastically perturbed dissipative dynamical systems. Sbornik. Mathematics, Tome 186 (1995) no. 1, pp. 29-45. http://geodesic.mathdoc.fr/item/SM_1995_186_1_a1/
[1] Babin A. V., Vishik M. I., Attraktory evolyutsionnykh uravnenii, Nauka, M., 1989 | MR | Zbl
[2] Temam R., Infinite-dimensional dynamical systems in mechanics and physics, Springer, NY., 1988 | MR | Zbl
[3] Ladyzhenskaya O. A., “O nakhozhdenii minimalnykh globalnykh attraktorov dlya uravnenii Nave–Stoksa i drugikh uravnenii s chastnymi proizvodnymi”, UMN, 42:6 (1987), 25–60 | Zbl
[4] Chueshov I. D., “Globalnye attraktory v nelineinykh zadachakh matematicheskoi fiziki”, UMN, 48:3 (1993), 135–162 | MR | Zbl
[5] Mitropolskii Yu. A., Lykova O. B., Integralnye mnogoobraziya v nelineinoi mekhanike, Nauka, M., 1963 | MR
[6] Khenri D., Geometricheskaya teoriya polulineinykh parabolicheskikh uravnenii, Mir, M., 1985 | MR
[7] Constantin P., Foias C., Nicolaenko B., Temam R., Integral manifolds and inertial manifolds for dissipative partial differential equations, Springer, N.Y., 1989 | MR
[8] Chueshov I. D., Vvedenie v teoriyu inertsialnykh mnogoobrazii, Izd-vo Khark. un-ta, Kharkov, 1992 | MR
[9] Smith R. A., “Poincare index theorem concerning periodic orbits of differential equations”, Proc. London. Math. Soc., 48:2 (1984), 341–362 | DOI | MR | Zbl
[10] Romanov A. V., “Tochnye otsenki razmernosti inertsialnykh mnogoobrazii dlya nelineinykh parabolicheskikh uravnenii”, Izvestiya RAN. Ser. matem., 57:4 (1993), 36–54 | MR | Zbl
[11] Mallet-Paret J., Sell G. R., “Inertial manifolds for reaction diffusion equations in higher space dimensions”, J. Amer. Math. Soc., 1:4 (1988), 805–866 | DOI | MR
[12] Foias C., Sell G. R., Titi E., “Exponential tracking and appromaximation of inertial manifolds for dissipative equations”, J. Dyn. Diff. Eq., 1 (1989), 199–224 | DOI | MR
[13] Girya T. V., “O stabilizatsii reshenii nelineinykh stokhasticheskikh parabolicheskikh uravnenii”, Ukr. matem. zhurn., 41:12 (1989), 1630–1636 | MR
[14] Kolomiets V. G., Melnikov A. I., “Ob integralnykh mnogoobraziyakh sistem differentsialnykh uravnenii so sluchainoi pravoi chastyu v banakhovom prostranstve”, Ukr. matem. zhurn., 44:1 (1992), 16–21 | MR | Zbl
[15] Rozovskii B. L., Evolyutsionnye stokhasticheskie sistemy, Nauka, M., 1983 | MR
[16] Vishik M. I., Fursikov A. V., Matematicheskie zadachi statisticheskoi gidromekhaniki, Nauka, M., 1980 | MR
[17] Eliott R., Stokhasticheskii analiz i ego prilozheniya, Mir, M., 1986 | MR
[18] Khasminskii R. Z., Ustoichivost sistem differentsialnykh uravnenii pri sluchainykh vozmuscheniyakh ikh parametrov, Nauka, M., 1968