Inertial manifolds and stationary measures for stochastically perturbed dissipative dynamical systems
Sbornik. Mathematics, Tome 186 (1995) no. 1, pp. 29-45 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

We prove the existence of inertial manifolds for a semilinear dynamical system perturbed by additive ‘white noise’. This manifold is generated by a certain predictable stationary vector process $\Phi_t(\omega)$. We study properties of this process as well as the properties of the induced finite-dimensional stochastic system on the manifold (inertial form). The results obtained allow us to prove for the original stochastic system a theorem on stabilization of stationary solutions to a unique invariant measure. This measure is uniquely defined by the probability distribution of the process $\Phi_t(\omega)$ and the form of the invariant measure corresponding to the inertial form.
@article{SM_1995_186_1_a1,
     author = {T. V. Girya and I. D. Chueshov},
     title = {Inertial manifolds and stationary measures for stochastically perturbed dissipative dynamical systems},
     journal = {Sbornik. Mathematics},
     pages = {29--45},
     year = {1995},
     volume = {186},
     number = {1},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_1995_186_1_a1/}
}
TY  - JOUR
AU  - T. V. Girya
AU  - I. D. Chueshov
TI  - Inertial manifolds and stationary measures for stochastically perturbed dissipative dynamical systems
JO  - Sbornik. Mathematics
PY  - 1995
SP  - 29
EP  - 45
VL  - 186
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/SM_1995_186_1_a1/
LA  - en
ID  - SM_1995_186_1_a1
ER  - 
%0 Journal Article
%A T. V. Girya
%A I. D. Chueshov
%T Inertial manifolds and stationary measures for stochastically perturbed dissipative dynamical systems
%J Sbornik. Mathematics
%D 1995
%P 29-45
%V 186
%N 1
%U http://geodesic.mathdoc.fr/item/SM_1995_186_1_a1/
%G en
%F SM_1995_186_1_a1
T. V. Girya; I. D. Chueshov. Inertial manifolds and stationary measures for stochastically perturbed dissipative dynamical systems. Sbornik. Mathematics, Tome 186 (1995) no. 1, pp. 29-45. http://geodesic.mathdoc.fr/item/SM_1995_186_1_a1/

[1] Babin A. V., Vishik M. I., Attraktory evolyutsionnykh uravnenii, Nauka, M., 1989 | MR | Zbl

[2] Temam R., Infinite-dimensional dynamical systems in mechanics and physics, Springer, NY., 1988 | MR | Zbl

[3] Ladyzhenskaya O. A., “O nakhozhdenii minimalnykh globalnykh attraktorov dlya uravnenii Nave–Stoksa i drugikh uravnenii s chastnymi proizvodnymi”, UMN, 42:6 (1987), 25–60 | Zbl

[4] Chueshov I. D., “Globalnye attraktory v nelineinykh zadachakh matematicheskoi fiziki”, UMN, 48:3 (1993), 135–162 | MR | Zbl

[5] Mitropolskii Yu. A., Lykova O. B., Integralnye mnogoobraziya v nelineinoi mekhanike, Nauka, M., 1963 | MR

[6] Khenri D., Geometricheskaya teoriya polulineinykh parabolicheskikh uravnenii, Mir, M., 1985 | MR

[7] Constantin P., Foias C., Nicolaenko B., Temam R., Integral manifolds and inertial manifolds for dissipative partial differential equations, Springer, N.Y., 1989 | MR

[8] Chueshov I. D., Vvedenie v teoriyu inertsialnykh mnogoobrazii, Izd-vo Khark. un-ta, Kharkov, 1992 | MR

[9] Smith R. A., “Poincare index theorem concerning periodic orbits of differential equations”, Proc. London. Math. Soc., 48:2 (1984), 341–362 | DOI | MR | Zbl

[10] Romanov A. V., “Tochnye otsenki razmernosti inertsialnykh mnogoobrazii dlya nelineinykh parabolicheskikh uravnenii”, Izvestiya RAN. Ser. matem., 57:4 (1993), 36–54 | MR | Zbl

[11] Mallet-Paret J., Sell G. R., “Inertial manifolds for reaction diffusion equations in higher space dimensions”, J. Amer. Math. Soc., 1:4 (1988), 805–866 | DOI | MR

[12] Foias C., Sell G. R., Titi E., “Exponential tracking and appromaximation of inertial manifolds for dissipative equations”, J. Dyn. Diff. Eq., 1 (1989), 199–224 | DOI | MR

[13] Girya T. V., “O stabilizatsii reshenii nelineinykh stokhasticheskikh parabolicheskikh uravnenii”, Ukr. matem. zhurn., 41:12 (1989), 1630–1636 | MR

[14] Kolomiets V. G., Melnikov A. I., “Ob integralnykh mnogoobraziyakh sistem differentsialnykh uravnenii so sluchainoi pravoi chastyu v banakhovom prostranstve”, Ukr. matem. zhurn., 44:1 (1992), 16–21 | MR | Zbl

[15] Rozovskii B. L., Evolyutsionnye stokhasticheskie sistemy, Nauka, M., 1983 | MR

[16] Vishik M. I., Fursikov A. V., Matematicheskie zadachi statisticheskoi gidromekhaniki, Nauka, M., 1980 | MR

[17] Eliott R., Stokhasticheskii analiz i ego prilozheniya, Mir, M., 1986 | MR

[18] Khasminskii R. Z., Ustoichivost sistem differentsialnykh uravnenii pri sluchainykh vozmuscheniyakh ikh parametrov, Nauka, M., 1968