Inertial manifolds and stationary measures for stochastically perturbed dissipative dynamical systems
Sbornik. Mathematics, Tome 186 (1995) no. 1, pp. 29-45

Voir la notice de l'article provenant de la source Math-Net.Ru

We prove the existence of inertial manifolds for a semilinear dynamical system perturbed by additive ‘white noise’. This manifold is generated by a certain predictable stationary vector process $\Phi_t(\omega)$. We study properties of this process as well as the properties of the induced finite-dimensional stochastic system on the manifold (inertial form). The results obtained allow us to prove for the original stochastic system a theorem on stabilization of stationary solutions to a unique invariant measure. This measure is uniquely defined by the probability distribution of the process $\Phi_t(\omega)$ and the form of the invariant measure corresponding to the inertial form.
@article{SM_1995_186_1_a1,
     author = {T. V. Girya and I. D. Chueshov},
     title = {Inertial manifolds and stationary measures for stochastically perturbed dissipative dynamical systems},
     journal = {Sbornik. Mathematics},
     pages = {29--45},
     publisher = {mathdoc},
     volume = {186},
     number = {1},
     year = {1995},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_1995_186_1_a1/}
}
TY  - JOUR
AU  - T. V. Girya
AU  - I. D. Chueshov
TI  - Inertial manifolds and stationary measures for stochastically perturbed dissipative dynamical systems
JO  - Sbornik. Mathematics
PY  - 1995
SP  - 29
EP  - 45
VL  - 186
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SM_1995_186_1_a1/
LA  - en
ID  - SM_1995_186_1_a1
ER  - 
%0 Journal Article
%A T. V. Girya
%A I. D. Chueshov
%T Inertial manifolds and stationary measures for stochastically perturbed dissipative dynamical systems
%J Sbornik. Mathematics
%D 1995
%P 29-45
%V 186
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SM_1995_186_1_a1/
%G en
%F SM_1995_186_1_a1
T. V. Girya; I. D. Chueshov. Inertial manifolds and stationary measures for stochastically perturbed dissipative dynamical systems. Sbornik. Mathematics, Tome 186 (1995) no. 1, pp. 29-45. http://geodesic.mathdoc.fr/item/SM_1995_186_1_a1/