A smooth trajectory classification of integrable Hamiltonian systems with two degrees of freedom
Sbornik. Mathematics, Tome 186 (1995) no. 1, pp. 1-27

Voir la notice de l'article provenant de la source Math-Net.Ru

In this paper we construct an invariant of integrable Hamiltonian systems with two degrees of freedom (the so-called st-molecule) enabling such systems to be classified on three-dimensional constant-energy surfaces up to orientation-preserving diffeomorphisms taking trajectories into trajectories.
@article{SM_1995_186_1_a0,
     author = {A. V. Bolsinov},
     title = {A smooth trajectory classification of integrable {Hamiltonian} systems with two degrees of freedom},
     journal = {Sbornik. Mathematics},
     pages = {1--27},
     publisher = {mathdoc},
     volume = {186},
     number = {1},
     year = {1995},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_1995_186_1_a0/}
}
TY  - JOUR
AU  - A. V. Bolsinov
TI  - A smooth trajectory classification of integrable Hamiltonian systems with two degrees of freedom
JO  - Sbornik. Mathematics
PY  - 1995
SP  - 1
EP  - 27
VL  - 186
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SM_1995_186_1_a0/
LA  - en
ID  - SM_1995_186_1_a0
ER  - 
%0 Journal Article
%A A. V. Bolsinov
%T A smooth trajectory classification of integrable Hamiltonian systems with two degrees of freedom
%J Sbornik. Mathematics
%D 1995
%P 1-27
%V 186
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SM_1995_186_1_a0/
%G en
%F SM_1995_186_1_a0
A. V. Bolsinov. A smooth trajectory classification of integrable Hamiltonian systems with two degrees of freedom. Sbornik. Mathematics, Tome 186 (1995) no. 1, pp. 1-27. http://geodesic.mathdoc.fr/item/SM_1995_186_1_a0/