A smooth trajectory classification of integrable Hamiltonian systems with two degrees of freedom
Sbornik. Mathematics, Tome 186 (1995) no. 1, pp. 1-27 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

In this paper we construct an invariant of integrable Hamiltonian systems with two degrees of freedom (the so-called st-molecule) enabling such systems to be classified on three-dimensional constant-energy surfaces up to orientation-preserving diffeomorphisms taking trajectories into trajectories.
@article{SM_1995_186_1_a0,
     author = {A. V. Bolsinov},
     title = {A smooth trajectory classification of integrable {Hamiltonian} systems with two degrees of freedom},
     journal = {Sbornik. Mathematics},
     pages = {1--27},
     year = {1995},
     volume = {186},
     number = {1},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_1995_186_1_a0/}
}
TY  - JOUR
AU  - A. V. Bolsinov
TI  - A smooth trajectory classification of integrable Hamiltonian systems with two degrees of freedom
JO  - Sbornik. Mathematics
PY  - 1995
SP  - 1
EP  - 27
VL  - 186
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/SM_1995_186_1_a0/
LA  - en
ID  - SM_1995_186_1_a0
ER  - 
%0 Journal Article
%A A. V. Bolsinov
%T A smooth trajectory classification of integrable Hamiltonian systems with two degrees of freedom
%J Sbornik. Mathematics
%D 1995
%P 1-27
%V 186
%N 1
%U http://geodesic.mathdoc.fr/item/SM_1995_186_1_a0/
%G en
%F SM_1995_186_1_a0
A. V. Bolsinov. A smooth trajectory classification of integrable Hamiltonian systems with two degrees of freedom. Sbornik. Mathematics, Tome 186 (1995) no. 1, pp. 1-27. http://geodesic.mathdoc.fr/item/SM_1995_186_1_a0/

[1] Bolsinov A. V., Fomenko A. T., “Traektornaya ekvivalentnost integriruemykh gamiltonovykh sistem s dvumya stepenyami svobody. Teorema klassifikatsii. I; II”, Matem. sb., 1994, no. 4, 27–80 ; No 5, 27–78 | MR | Zbl | MR | Zbl

[2] Bolsinov A. V., Fomenko A. T., “Traektornaya klassifikatsiya integriruemykh sistem tipa Eilera v dinamike tverdogo tela”, UMN, 48:5 (1993), 163–164 | MR | Zbl

[3] Bolsinov A. V., Fomenko A. T., “Traektornaya klassifikatsiya prostykh integriruemykh gamiltonovykh sistem na trekhmernykh poverkhnostyakh postoyannoi energii”, DAN, 332:5 (1993) | MR | Zbl

[4] Bolsinov A. V., Matveev S. V., Fomenko A. T., “Topologicheskaya klassifikatsiya integriruemykh gamiltonovykh sistem s dvumya stepenyami svobody. Spisok sistem maloi slozhnosti”, UMN, 45:2 (1990), 49–77 | MR | Zbl

[5] Fomenko A. T. (Ed.), Topological Classification of Integrable Systems, Advances in Soviet Mathematics, 6, Amer. Math. Soc., 1991 | MR | Zbl

[6] Arnold V. I., Ilyashenko Yu. S., “Obyknovennye differentsialnye uravneniya”, Sovremennye problemy matematiki. Fundamentalnye napravleniya, 1, VINITI, 1985, 7–149 | MR | Zbl

[7] Mozer J., “On the volume elements on a manifolds”, Trans. Amer. Math. Soc., 120:2 (1965), 286–294 | DOI | MR | Zbl

[8] Dufour J.-P., Molino P., Toulet A., “Classification des systemes integrables en dimension 2 et invariants des modeles de Fomenko”, C. R. Ac. Sc., 1994 | MR

[9] Colin De Verdiere Y., Vey J., “Le lemme de Morse isochore”, Topology, 18 (1979), 283–293 | DOI | MR | Zbl