@article{SM_1995_186_1_a0,
author = {A. V. Bolsinov},
title = {A smooth trajectory classification of integrable {Hamiltonian} systems with two degrees of freedom},
journal = {Sbornik. Mathematics},
pages = {1--27},
year = {1995},
volume = {186},
number = {1},
language = {en},
url = {http://geodesic.mathdoc.fr/item/SM_1995_186_1_a0/}
}
A. V. Bolsinov. A smooth trajectory classification of integrable Hamiltonian systems with two degrees of freedom. Sbornik. Mathematics, Tome 186 (1995) no. 1, pp. 1-27. http://geodesic.mathdoc.fr/item/SM_1995_186_1_a0/
[1] Bolsinov A. V., Fomenko A. T., “Traektornaya ekvivalentnost integriruemykh gamiltonovykh sistem s dvumya stepenyami svobody. Teorema klassifikatsii. I; II”, Matem. sb., 1994, no. 4, 27–80 ; No 5, 27–78 | MR | Zbl | MR | Zbl
[2] Bolsinov A. V., Fomenko A. T., “Traektornaya klassifikatsiya integriruemykh sistem tipa Eilera v dinamike tverdogo tela”, UMN, 48:5 (1993), 163–164 | MR | Zbl
[3] Bolsinov A. V., Fomenko A. T., “Traektornaya klassifikatsiya prostykh integriruemykh gamiltonovykh sistem na trekhmernykh poverkhnostyakh postoyannoi energii”, DAN, 332:5 (1993) | MR | Zbl
[4] Bolsinov A. V., Matveev S. V., Fomenko A. T., “Topologicheskaya klassifikatsiya integriruemykh gamiltonovykh sistem s dvumya stepenyami svobody. Spisok sistem maloi slozhnosti”, UMN, 45:2 (1990), 49–77 | MR | Zbl
[5] Fomenko A. T. (Ed.), Topological Classification of Integrable Systems, Advances in Soviet Mathematics, 6, Amer. Math. Soc., 1991 | MR | Zbl
[6] Arnold V. I., Ilyashenko Yu. S., “Obyknovennye differentsialnye uravneniya”, Sovremennye problemy matematiki. Fundamentalnye napravleniya, 1, VINITI, 1985, 7–149 | MR | Zbl
[7] Mozer J., “On the volume elements on a manifolds”, Trans. Amer. Math. Soc., 120:2 (1965), 286–294 | DOI | MR | Zbl
[8] Dufour J.-P., Molino P., Toulet A., “Classification des systemes integrables en dimension 2 et invariants des modeles de Fomenko”, C. R. Ac. Sc., 1994 | MR
[9] Colin De Verdiere Y., Vey J., “Le lemme de Morse isochore”, Topology, 18 (1979), 283–293 | DOI | MR | Zbl