Evolution of the support of a~solution with unbounded energy of quasi-linear degenerate parabolic equation of arbitrary order
    
    
  
  
  
      
      
      
        
Sbornik. Mathematics, Tome 186 (1995) no. 12, pp. 1843-1864
    
  
  
  
  
  
    
      
      
        
      
      
      
    Voir la notice de l'article provenant de la source Math-Net.Ru
            
              			The Cauchy problem for a quasi-linear degenerate parabolic equation in divergence from with energy space $L_p\bigl(0,T;W_{p,\operatorname{loc}}^m(\mathbb R^n)\bigr)$, 
$m\geqslant 1$, $p>2$, $n\geqslant 1$ and  with initial function $u_0(x)\in L_{2,\operatorname{loc}}(\mathbb R^n)$ is considered. The existence of a generalized solution $u(x,t)$ is proved for $u_0(x)$ growing at infinity at the rate: 
$$
\int_{|x|\tau}u_0(x)^2\,dx\tau^{n+\frac{2mp}{p-2}} \qquad 
\forall\,\tau>\tau'>0, \quad c\infty.
$$
For more sever constraints on the growth of $u_0(x)$ several fairly wide uniqueness classes for the above-mentioned solution are discovered. The question of describing the geometry of the domain $\Omega(t)\equiv\mathbb R^n\setminus\operatorname{supp}_xu(x,t)$ for $\Omega_0\equiv\mathbb R^n\setminus\operatorname{supp}u_0(x)\ne\varnothing$ is considered. In case when the domain $\Omega_0$ is unbounded, estimates in terms of the global properties of the initial function $u_0(x)$ are established that characterize the geometry of $\Omega(t)$ as $t\to\infty$.
			
            
            
            
          
        
      @article{SM_1995_186_12_a7,
     author = {A. E. Shishkov},
     title = {Evolution of the support of a~solution with unbounded energy of quasi-linear degenerate parabolic equation of arbitrary order},
     journal = {Sbornik. Mathematics},
     pages = {1843--1864},
     publisher = {mathdoc},
     volume = {186},
     number = {12},
     year = {1995},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_1995_186_12_a7/}
}
                      
                      
                    TY - JOUR AU - A. E. Shishkov TI - Evolution of the support of a~solution with unbounded energy of quasi-linear degenerate parabolic equation of arbitrary order JO - Sbornik. Mathematics PY - 1995 SP - 1843 EP - 1864 VL - 186 IS - 12 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/SM_1995_186_12_a7/ LA - en ID - SM_1995_186_12_a7 ER -
%0 Journal Article %A A. E. Shishkov %T Evolution of the support of a~solution with unbounded energy of quasi-linear degenerate parabolic equation of arbitrary order %J Sbornik. Mathematics %D 1995 %P 1843-1864 %V 186 %N 12 %I mathdoc %U http://geodesic.mathdoc.fr/item/SM_1995_186_12_a7/ %G en %F SM_1995_186_12_a7
A. E. Shishkov. Evolution of the support of a~solution with unbounded energy of quasi-linear degenerate parabolic equation of arbitrary order. Sbornik. Mathematics, Tome 186 (1995) no. 12, pp. 1843-1864. http://geodesic.mathdoc.fr/item/SM_1995_186_12_a7/
