Evolution of the support of a~solution with unbounded energy of quasi-linear degenerate parabolic equation of arbitrary order
Sbornik. Mathematics, Tome 186 (1995) no. 12, pp. 1843-1864

Voir la notice de l'article provenant de la source Math-Net.Ru

The Cauchy problem for a quasi-linear degenerate parabolic equation in divergence from with energy space $L_p\bigl(0,T;W_{p,\operatorname{loc}}^m(\mathbb R^n)\bigr)$, $m\geqslant 1$, $p>2$, $n\geqslant 1$ and with initial function $u_0(x)\in L_{2,\operatorname{loc}}(\mathbb R^n)$ is considered. The existence of a generalized solution $u(x,t)$ is proved for $u_0(x)$ growing at infinity at the rate: $$ \int_{|x|\tau}u_0(x)^2\,dx\tau^{n+\frac{2mp}{p-2}} \qquad \forall\,\tau>\tau'>0, \quad c\infty. $$ For more sever constraints on the growth of $u_0(x)$ several fairly wide uniqueness classes for the above-mentioned solution are discovered. The question of describing the geometry of the domain $\Omega(t)\equiv\mathbb R^n\setminus\operatorname{supp}_xu(x,t)$ for $\Omega_0\equiv\mathbb R^n\setminus\operatorname{supp}u_0(x)\ne\varnothing$ is considered. In case when the domain $\Omega_0$ is unbounded, estimates in terms of the global properties of the initial function $u_0(x)$ are established that characterize the geometry of $\Omega(t)$ as $t\to\infty$.
@article{SM_1995_186_12_a7,
     author = {A. E. Shishkov},
     title = {Evolution of the support of a~solution with unbounded energy of quasi-linear degenerate parabolic equation of arbitrary order},
     journal = {Sbornik. Mathematics},
     pages = {1843--1864},
     publisher = {mathdoc},
     volume = {186},
     number = {12},
     year = {1995},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_1995_186_12_a7/}
}
TY  - JOUR
AU  - A. E. Shishkov
TI  - Evolution of the support of a~solution with unbounded energy of quasi-linear degenerate parabolic equation of arbitrary order
JO  - Sbornik. Mathematics
PY  - 1995
SP  - 1843
EP  - 1864
VL  - 186
IS  - 12
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SM_1995_186_12_a7/
LA  - en
ID  - SM_1995_186_12_a7
ER  - 
%0 Journal Article
%A A. E. Shishkov
%T Evolution of the support of a~solution with unbounded energy of quasi-linear degenerate parabolic equation of arbitrary order
%J Sbornik. Mathematics
%D 1995
%P 1843-1864
%V 186
%N 12
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SM_1995_186_12_a7/
%G en
%F SM_1995_186_12_a7
A. E. Shishkov. Evolution of the support of a~solution with unbounded energy of quasi-linear degenerate parabolic equation of arbitrary order. Sbornik. Mathematics, Tome 186 (1995) no. 12, pp. 1843-1864. http://geodesic.mathdoc.fr/item/SM_1995_186_12_a7/