Series in multiplicative systems convergent to Denjoy-integrable functions
Sbornik. Mathematics, Tome 186 (1995) no. 12, pp. 1821-1842 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

An example of a series in the Chrestenson–Levi system with $p_j=3$, $j=0,1,\dots$, with zero-convergent coefficients is constructed such that $\lim_{n\to\infty}S_{m_n}(x)=f(x)$ everywhere on $[0,1)$ for some function $f$ that is Denjoy integrable in the extended sense, but this series is not the Denjoy–Fourier series of $f$. A series in the Price system defined by a bounded sequence $\{p_j\}_{j=0}^\infty$ that converges everywhere on $[0,1)$ (with the possible exception of some countable set) to a function Denjoy integrable in the extended sense is proved to be Denjoy–Fourier series of this function.
@article{SM_1995_186_12_a6,
     author = {V. A. Skvortsov and M. P. Koroleva},
     title = {Series in multiplicative systems convergent to {Denjoy-integrable} functions},
     journal = {Sbornik. Mathematics},
     pages = {1821--1842},
     year = {1995},
     volume = {186},
     number = {12},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_1995_186_12_a6/}
}
TY  - JOUR
AU  - V. A. Skvortsov
AU  - M. P. Koroleva
TI  - Series in multiplicative systems convergent to Denjoy-integrable functions
JO  - Sbornik. Mathematics
PY  - 1995
SP  - 1821
EP  - 1842
VL  - 186
IS  - 12
UR  - http://geodesic.mathdoc.fr/item/SM_1995_186_12_a6/
LA  - en
ID  - SM_1995_186_12_a6
ER  - 
%0 Journal Article
%A V. A. Skvortsov
%A M. P. Koroleva
%T Series in multiplicative systems convergent to Denjoy-integrable functions
%J Sbornik. Mathematics
%D 1995
%P 1821-1842
%V 186
%N 12
%U http://geodesic.mathdoc.fr/item/SM_1995_186_12_a6/
%G en
%F SM_1995_186_12_a6
V. A. Skvortsov; M. P. Koroleva. Series in multiplicative systems convergent to Denjoy-integrable functions. Sbornik. Mathematics, Tome 186 (1995) no. 12, pp. 1821-1842. http://geodesic.mathdoc.fr/item/SM_1995_186_12_a6/

[1] Zigmund A., Trigonometricheskie ryady, T. 1, 2, Mir, M., 1965 | MR

[2] Arutyunyan A. G., Talalyan A. A., “O edinstvennosti ryadov po sistemam Khaara i Uolsha”, Izv. AN SSSR. Seriya matem., 28 (1964), 1391–1408 | MR | Zbl

[3] Arutyunyan A. G., “Vosstanovlenie koeffitsientov ryadov po sistemam Khaara i Uolsha, skhodyaschikhsya k funktsiyam, integriruemym po Danzhua”, Izv. AN SSSR. Seriya matem., 30:2 (1966), 325–344 | MR | Zbl

[4] Sklyarenko V. A., “Ob integriruemykh po Danzhua summakh vsyudu skhodyaschikhsya trigonometricheskikh ryadov”, DAN SSSR, 210:3 (1973), 533–536 | MR | Zbl

[5] Agaev G. N., Vilenkin N. Ya., Dzhafarli G. M., Rubinshtein A. I., Multiplikativnye sistemy funktsii i garmonicheskii analiz na nul-mernykh gruppakh, Baku, 1981 | Zbl

[6] Bokaev N. A., Skvortsov V. A., “Obobschenie odnoi teoremy edinstvennosti dlya ryadov po multiplikativnym sistemam”, Vestnik MGU. Ser. matem., mekh., 1987, no. 3, 11–15 | MR

[7] Saks S., Teoriya integrala, IL, M., 1949

[8] Skvortsov V. A., “Ob odnom primere ryada po sisteme Uolsha”, Matem. zametki, 28:5 (1980), 737–748 | MR

[9] Skvortsov V. A., “O nul-ryadakh po nekotoroi multiplikativnoi sisteme”, Vestnik MGU. Ser. matem., mekh., 1979, no. 6, 63–67 | MR | Zbl

[10] Golubov B. I., Efimov A. V., Skvortsov V. A., Ryady i preobrazovaniya Uolsha: teoriya i primenenie, Nauka, M., 1978