Series in multiplicative systems convergent to Denjoy-integrable functions
Sbornik. Mathematics, Tome 186 (1995) no. 12, pp. 1821-1842
Voir la notice de l'article provenant de la source Math-Net.Ru
An example of a series in the Chrestenson–Levi system with $p_j=3$, $j=0,1,\dots$, with zero-convergent coefficients is constructed such that $\lim_{n\to\infty}S_{m_n}(x)=f(x)$ everywhere on $[0,1)$ for some function $f$ that is Denjoy integrable in the extended sense, but this series is not the Denjoy–Fourier series of $f$. A series in the Price system defined by a bounded sequence $\{p_j\}_{j=0}^\infty$ that converges everywhere on $[0,1)$ (with the possible exception of some countable set) to a function Denjoy integrable in the extended sense is proved to be Denjoy–Fourier series of this function.
@article{SM_1995_186_12_a6,
author = {V. A. Skvortsov and M. P. Koroleva},
title = {Series in multiplicative systems convergent to {Denjoy-integrable} functions},
journal = {Sbornik. Mathematics},
pages = {1821--1842},
publisher = {mathdoc},
volume = {186},
number = {12},
year = {1995},
language = {en},
url = {http://geodesic.mathdoc.fr/item/SM_1995_186_12_a6/}
}
TY - JOUR AU - V. A. Skvortsov AU - M. P. Koroleva TI - Series in multiplicative systems convergent to Denjoy-integrable functions JO - Sbornik. Mathematics PY - 1995 SP - 1821 EP - 1842 VL - 186 IS - 12 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/SM_1995_186_12_a6/ LA - en ID - SM_1995_186_12_a6 ER -
V. A. Skvortsov; M. P. Koroleva. Series in multiplicative systems convergent to Denjoy-integrable functions. Sbornik. Mathematics, Tome 186 (1995) no. 12, pp. 1821-1842. http://geodesic.mathdoc.fr/item/SM_1995_186_12_a6/