Hidden singularities and the~Vasil'ev homology complex of singularity classes
    
    
  
  
  
      
      
      
        
Sbornik. Mathematics, Tome 186 (1995) no. 12, pp. 1811-1820
    
  
  
  
  
  
    
      
      
        
      
      
      
    Voir la notice de l'article provenant de la source Math-Net.Ru
            
              			In order to determine the cohomology classes dual to the degeneracy cycles of various structures on manifolds, V. Vasil'ev introduced the so-called universal cohomology complex of singularity classes. The formal reversal of arrows, that is, the passage from the cohomology complex to the homology complex, leads to new characteristic classes, called the 'classes of hidden singularities'. We describe here this Vasil'ev homology complex and compute the characteristic classes of the Lagrange and Legendre immersions determined by it.
			
            
            
            
          
        
      @article{SM_1995_186_12_a5,
     author = {M. E. Kazarian},
     title = {Hidden singularities and {the~Vasil'ev} homology complex of singularity classes},
     journal = {Sbornik. Mathematics},
     pages = {1811--1820},
     publisher = {mathdoc},
     volume = {186},
     number = {12},
     year = {1995},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_1995_186_12_a5/}
}
                      
                      
                    M. E. Kazarian. Hidden singularities and the~Vasil'ev homology complex of singularity classes. Sbornik. Mathematics, Tome 186 (1995) no. 12, pp. 1811-1820. http://geodesic.mathdoc.fr/item/SM_1995_186_12_a5/
