Hidden singularities and the Vasil'ev homology complex of singularity classes
Sbornik. Mathematics, Tome 186 (1995) no. 12, pp. 1811-1820 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

In order to determine the cohomology classes dual to the degeneracy cycles of various structures on manifolds, V. Vasil'ev introduced the so-called universal cohomology complex of singularity classes. The formal reversal of arrows, that is, the passage from the cohomology complex to the homology complex, leads to new characteristic classes, called the 'classes of hidden singularities'. We describe here this Vasil'ev homology complex and compute the characteristic classes of the Lagrange and Legendre immersions determined by it.
@article{SM_1995_186_12_a5,
     author = {M. E. Kazarian},
     title = {Hidden singularities and {the~Vasil'ev} homology complex of singularity classes},
     journal = {Sbornik. Mathematics},
     pages = {1811--1820},
     year = {1995},
     volume = {186},
     number = {12},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_1995_186_12_a5/}
}
TY  - JOUR
AU  - M. E. Kazarian
TI  - Hidden singularities and the Vasil'ev homology complex of singularity classes
JO  - Sbornik. Mathematics
PY  - 1995
SP  - 1811
EP  - 1820
VL  - 186
IS  - 12
UR  - http://geodesic.mathdoc.fr/item/SM_1995_186_12_a5/
LA  - en
ID  - SM_1995_186_12_a5
ER  - 
%0 Journal Article
%A M. E. Kazarian
%T Hidden singularities and the Vasil'ev homology complex of singularity classes
%J Sbornik. Mathematics
%D 1995
%P 1811-1820
%V 186
%N 12
%U http://geodesic.mathdoc.fr/item/SM_1995_186_12_a5/
%G en
%F SM_1995_186_12_a5
M. E. Kazarian. Hidden singularities and the Vasil'ev homology complex of singularity classes. Sbornik. Mathematics, Tome 186 (1995) no. 12, pp. 1811-1820. http://geodesic.mathdoc.fr/item/SM_1995_186_12_a5/

[1] Arnold V. I., Givental A. V., “Simplekticheskaya geometriya”, Sovr. probl. matem. Fundam. napr., 4, VINITI, M., 1985, 7–139

[2] Spener E., Algebraicheskaya topologiya, Mir, M., 1971 | MR | Zbl

[3] Arnold V. I., “Sur les propriétés topologiques des projections lagrangiennes en géometrie symplectique des caustiques”, Cahier de Mathématiques de la decision, CEREMADE, 14/6/93, 9320

[4] Borel A., “La cohomologie $\operatorname {mod}2$ de certains espaces homogènes”, Comm. Math. Helv., 27 (1953), 165–197 | DOI | MR | Zbl

[5] Kazarian M. È., Umbilical Characteristic Number of Lagrangian Mappings of $3$-dimensional Pseudooptical Manifolds, Preprint No 172/1994, Ruhr-Universität Bohum | Zbl

[6] Vassiliev V. A., Lagrange and Legendre Characteristic Classes, 2-d edition, Gordon Breach, 1993