Extensions of the ring of continuous functions generated by the classical, rational, and regular rings of fractions as divisible hulls
Sbornik. Mathematics, Tome 186 (1995) no. 12, pp. 1773-1809 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

The metaclassical extension generated by classical ring of quotients of the ring of continuous functions, the metarational extension generated by the rationally complete ring of quotients, and the metaregular extension generated by the regular ring of quotients, are considered along the lines of Fine–Gillman–Lambek. A new algebraic category of $c$-rings with refinement ($\equiv cr$-rings) is used to characterize them. Based on this the concept of a divisible $cr$-hull of step type is introduced. Parallel characterization are given of the metaclassical extension and the Riemann extension generated by Riemann-integrable functions, and also of the metarational and metaregular extensions and the Hausdorff–Sierpinski extension generated by semicontinuous functions.
@article{SM_1995_186_12_a4,
     author = {V. K. Zakharov},
     title = {Extensions of the~ring of continuous functions generated by the~classical, rational, and regular rings of fractions as divisible hulls},
     journal = {Sbornik. Mathematics},
     pages = {1773--1809},
     year = {1995},
     volume = {186},
     number = {12},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_1995_186_12_a4/}
}
TY  - JOUR
AU  - V. K. Zakharov
TI  - Extensions of the ring of continuous functions generated by the classical, rational, and regular rings of fractions as divisible hulls
JO  - Sbornik. Mathematics
PY  - 1995
SP  - 1773
EP  - 1809
VL  - 186
IS  - 12
UR  - http://geodesic.mathdoc.fr/item/SM_1995_186_12_a4/
LA  - en
ID  - SM_1995_186_12_a4
ER  - 
%0 Journal Article
%A V. K. Zakharov
%T Extensions of the ring of continuous functions generated by the classical, rational, and regular rings of fractions as divisible hulls
%J Sbornik. Mathematics
%D 1995
%P 1773-1809
%V 186
%N 12
%U http://geodesic.mathdoc.fr/item/SM_1995_186_12_a4/
%G en
%F SM_1995_186_12_a4
V. K. Zakharov. Extensions of the ring of continuous functions generated by the classical, rational, and regular rings of fractions as divisible hulls. Sbornik. Mathematics, Tome 186 (1995) no. 12, pp. 1773-1809. http://geodesic.mathdoc.fr/item/SM_1995_186_12_a4/

[1] Kuratovskii K., Topologiya, T. I, Mir, M., 1966 | MR

[2] Semadeni Z., Banach spaces of continuous functions, Polish. Sci. Publ., Warszawa, 1971 | MR | Zbl

[3] Burbaki N., Integrirovanie, T. IX, gl. III–V, Nauka, M., 1977

[4] Arens R. F., “Operations induced in function classes”, Monatsh. Math., 55:1 (1951), 1–19 | DOI | MR | Zbl

[5] Fine N. J., Gillman L., Lambeck J., Rings of quotients of rings of functions, McGill Univ. Press, Montreal, 1965

[6] Lambek I., Koltsa i moduli, Mir, M., 1971 | MR | Zbl

[7] Zakharov V. K., “Funktsionalnoe predstavlenie ravnomernogo popolneniya maksimalnogo i schetno-plotnogo modulei chastnykh modulya nepreryvnykh funktsii”, UMN, 35:4 (1980), 187–188 | MR | Zbl

[8] Dashiell F., Hager A., Henriksen M., “Order-Cauchy completions of rings and vector lattices of continuous functions”, Can. J. Math., 32:3 (1980), 657–685 | MR | Zbl

[9] Zaharov V. K., “On functions connected with sequential absolute, Cantor completion and classical ring of quotients”, Per. Math. Hung., 19:2 (1988), 113–133 | DOI | MR

[10] Feis K., Algebra: koltsa, moduli i kategorii, Mir, M., 1977

[11] Zakharov V. K., “$cr$-obolochki koltsa nepreryvnykh funktsii”, DAN SSSR, 294:3 (1987), 531–534 | MR | Zbl

[12] Zakharov V. K., “Svyaz mezhdu polnym koltsom chastnykh koltsa nepreryvnykh funktsii, regulyarnym popolneniem i rasshireniyami Khausdorfa–Serpinskogo”, UMN, 45:6 (1990), 133–134 | MR | Zbl

[13] Zakharov V. K., “Universalno-izmerimoe rasshirenie i rasshirenie Arensa banakhovoi algebry nepreryvnykh funktsii”, Funkts. anal. i ego prilozh., 24:2 (1990), 83–84 | MR | Zbl

[14] Zakharov V. K., “Svyazi mezhdu rasshireniem Lebega i rasshireniem Borelya pervogo klassa i mezhdu sootvetstvuyuschim im proobrazami”, Izv. AN SSSR. Ser. matem., 54:5 (1990), 928–956 | MR | Zbl

[15] Zakharov V. K., “Rasshirenie Arensa koltsa nepreryvnykh funktsii”, Algebra i analiz, 4:1 (1992), 135–153 | MR | Zbl

[16] Zakharov V. K., Koltsa chastnykh i delimye obolochki koltsa nepreryvnykh funktsii, Diss. ...dokt. fiz.-matem. nauk, S.-P., 1991

[17] Veksler A. I., Zakharov V. K., “Regulyarnye popolneniya kommutativnykh polupervichnykh kolets”, Vestnik MGU. Ser. 1, 1981, no. 1, 98–99

[18] Zakharov V. K., “Funktsionalnoe predstavlenie regulyarnogo popolneniya modulei bez krucheniya Utumi”, Izv. VUZov. Matem., 5 (1982), 22–29 | Zbl

[19] Aleksandrov A. D., “Additive functions in abstract spaces. I–III”, Matem. sb., 8 (1940), 303–348 ; 9 (1941), 563–628 ; 13 (1943), 169–238 | MR | MR

[20] Zakharov V. K., “Proobraz Gordona prostranstva Aleksandrova kak okruzhaemoe nakrytie”, Izv. RAN. Ser. matem., 56:2 (1992), 427–448 | Zbl

[21] Zakharov V. K., “Topologicheskie proobrazy, sootvetstvuyuschie klassicheskim rasshireniyam koltsa nepreryvnykh funktsii”, Vestnik MGU. Ser. 1, 1990, no. 1, 44–45 | MR | Zbl

[22] Delfosse L.-P., “Caractérizations d'anneaux de fonctions continues”, Ann. Soc. Sci. Bruxelles. sér. I, 89:3 (1975), 364–368 | MR | Zbl

[23] Zakharov V. K., “Delimost na schetno-platnye idealy i schetnaya ortopolnota modulei”, Matem. zametki, 30:4 (1981), 481–496 | MR | Zbl

[24] Hausdorff F., “Über halbstetige Functionen und deren Verallgemeinerung”, Math. Z., 4 (1915), 292–309 | MR

[25] Sierpiński W., “Sur les fonctions développables en séries absolument convergentes de fonctions continues”, Fund. Math., 2 (1921), 15–27 | Zbl

[26] Zaharov V. K., “Alexandrovian cover and Sierpińskian extension”, Studia Sci. Math. Hung., 24 (1989), 93–117 | MR | Zbl