Smooth immersion of manifolds of small dimension. II.~Cobordism group of critical points of multiparameter families of functions
Sbornik. Mathematics, Tome 186 (1995) no. 12, pp. 1727-1751

Voir la notice de l'article provenant de la source Math-Net.Ru

The technique of studying the singularities of an I-structure developed in the first part of this paper is used to study the topological properties of the set of critical values of families of smooth functions. It turns out that certain surfaces modelling the graphics of critical values of two-parameter families of functions cannot be realized by any family (under certain additional assumptions about he separatrix manifolds). The investigation is carried out using the algebraic $K$-functor.
@article{SM_1995_186_12_a2,
     author = {P. M. Akhmet'ev},
     title = {Smooth immersion of manifolds of small dimension. {II.~Cobordism} group of critical points of multiparameter families of functions},
     journal = {Sbornik. Mathematics},
     pages = {1727--1751},
     publisher = {mathdoc},
     volume = {186},
     number = {12},
     year = {1995},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_1995_186_12_a2/}
}
TY  - JOUR
AU  - P. M. Akhmet'ev
TI  - Smooth immersion of manifolds of small dimension. II.~Cobordism group of critical points of multiparameter families of functions
JO  - Sbornik. Mathematics
PY  - 1995
SP  - 1727
EP  - 1751
VL  - 186
IS  - 12
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SM_1995_186_12_a2/
LA  - en
ID  - SM_1995_186_12_a2
ER  - 
%0 Journal Article
%A P. M. Akhmet'ev
%T Smooth immersion of manifolds of small dimension. II.~Cobordism group of critical points of multiparameter families of functions
%J Sbornik. Mathematics
%D 1995
%P 1727-1751
%V 186
%N 12
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SM_1995_186_12_a2/
%G en
%F SM_1995_186_12_a2
P. M. Akhmet'ev. Smooth immersion of manifolds of small dimension. II.~Cobordism group of critical points of multiparameter families of functions. Sbornik. Mathematics, Tome 186 (1995) no. 12, pp. 1727-1751. http://geodesic.mathdoc.fr/item/SM_1995_186_12_a2/