@article{SM_1995_186_12_a2,
author = {P. M. Akhmet'ev},
title = {Smooth immersion of manifolds of small dimension. {II.~Cobordism} group of critical points of multiparameter families of functions},
journal = {Sbornik. Mathematics},
pages = {1727--1751},
year = {1995},
volume = {186},
number = {12},
language = {en},
url = {http://geodesic.mathdoc.fr/item/SM_1995_186_12_a2/}
}
TY - JOUR AU - P. M. Akhmet'ev TI - Smooth immersion of manifolds of small dimension. II. Cobordism group of critical points of multiparameter families of functions JO - Sbornik. Mathematics PY - 1995 SP - 1727 EP - 1751 VL - 186 IS - 12 UR - http://geodesic.mathdoc.fr/item/SM_1995_186_12_a2/ LA - en ID - SM_1995_186_12_a2 ER -
%0 Journal Article %A P. M. Akhmet'ev %T Smooth immersion of manifolds of small dimension. II. Cobordism group of critical points of multiparameter families of functions %J Sbornik. Mathematics %D 1995 %P 1727-1751 %V 186 %N 12 %U http://geodesic.mathdoc.fr/item/SM_1995_186_12_a2/ %G en %F SM_1995_186_12_a2
P. M. Akhmet'ev. Smooth immersion of manifolds of small dimension. II. Cobordism group of critical points of multiparameter families of functions. Sbornik. Mathematics, Tome 186 (1995) no. 12, pp. 1727-1751. http://geodesic.mathdoc.fr/item/SM_1995_186_12_a2/
[1] Cerf J., “La stratification naturelle des espaces de fonctions differentiables reeles et le theorem de la pseudo-isotopie”, Inst. Hautes Etudes Sci. Publ. Math., 1970, no. 39, 5–173 | MR | Zbl
[2] Hatcher A., Wagoner J., Pseudo-isotopies of compact manifolds, Astérisque, 6, 1973 | MR | Zbl
[3] Volodin I. A., “Obobschennye gruppy Uaitkheda i psevdoizotopii”, UMN, 27:5 (1972), 229–230 | MR | Zbl
[4] Igusa K., “What happens to Hatcher's and Wagoner's formula for $\pi _0\mathscr C(M)$ when the first Postnikov invariant of $M$ is nontrivial?”, Lect. Notes Math., 1046, 1984, 104–172 | MR
[5] Igusa K., “Higher singularities of smooth functions are unnecessary”, Ann. Math., 119 (1984), 1–58 | DOI | MR | Zbl
[6] Akhmetev P. M., “Gladkie pogruzheniya mnogoobrazii malykh razmernostei”, Matem. sb., 185:10 (1994), 3–26 | MR | Zbl
[7] Wells R., “Cobordism of immersions”, Topology, 5 (1966), 281–294 | DOI | MR | Zbl
[8] Koschorke U., “Vector fields and another vector bundle morphism”, Lecture Notes in Math., 847, Springer-Verlag, Berlin–New York, 1981 | MR | Zbl
[9] Szucs A., “Cobordism groups of immersions with restricted self-intersection”, Osaka J. Math., 21 (1984), 71–80 | MR
[10] Szucs A., “On the cobordism groups of immersions and embeddings”, Math. Proc. of Camb. Phil. Soc., 109 (1981), 343–349 | DOI | MR
[11] Szucs A., Cobordism groups of immersions of oriented manifolds, Preprint, 1992 | MR
[12] Eliashberg Ya. M., “Khirurgiya osobennostei gladkikh otobrazhenii”, Izv. AN SSSR. Ser. matem., 36:6 (1972), 1321–1347 | MR | Zbl
[13] Chess D., “Singularity theory and configuration space models of $\Omega^n S^n$ of non-connected spaces”, Topology and its applications, 25 (1987), 313–338 | DOI | MR | Zbl
[14] Milnor Dzh., Vvedenie v algebraicheskuyu $K$-teoriyu, Mir, M., 1974 | MR | Zbl
[15] Arnold V. I., Teoriya katastrof, Nauka, M., 1991 | MR
[16] Szucs A., Models of the loop spaces of Thom spaces and eleminating singularities, Preprint, 1993