Smooth immersion of manifolds of small dimension. II. Cobordism group of critical points of multiparameter families of functions
Sbornik. Mathematics, Tome 186 (1995) no. 12, pp. 1727-1751 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

The technique of studying the singularities of an I-structure developed in the first part of this paper is used to study the topological properties of the set of critical values of families of smooth functions. It turns out that certain surfaces modelling the graphics of critical values of two-parameter families of functions cannot be realized by any family (under certain additional assumptions about he separatrix manifolds). The investigation is carried out using the algebraic $K$-functor.
@article{SM_1995_186_12_a2,
     author = {P. M. Akhmet'ev},
     title = {Smooth immersion of manifolds of small dimension. {II.~Cobordism} group of critical points of multiparameter families of functions},
     journal = {Sbornik. Mathematics},
     pages = {1727--1751},
     year = {1995},
     volume = {186},
     number = {12},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_1995_186_12_a2/}
}
TY  - JOUR
AU  - P. M. Akhmet'ev
TI  - Smooth immersion of manifolds of small dimension. II. Cobordism group of critical points of multiparameter families of functions
JO  - Sbornik. Mathematics
PY  - 1995
SP  - 1727
EP  - 1751
VL  - 186
IS  - 12
UR  - http://geodesic.mathdoc.fr/item/SM_1995_186_12_a2/
LA  - en
ID  - SM_1995_186_12_a2
ER  - 
%0 Journal Article
%A P. M. Akhmet'ev
%T Smooth immersion of manifolds of small dimension. II. Cobordism group of critical points of multiparameter families of functions
%J Sbornik. Mathematics
%D 1995
%P 1727-1751
%V 186
%N 12
%U http://geodesic.mathdoc.fr/item/SM_1995_186_12_a2/
%G en
%F SM_1995_186_12_a2
P. M. Akhmet'ev. Smooth immersion of manifolds of small dimension. II. Cobordism group of critical points of multiparameter families of functions. Sbornik. Mathematics, Tome 186 (1995) no. 12, pp. 1727-1751. http://geodesic.mathdoc.fr/item/SM_1995_186_12_a2/

[1] Cerf J., “La stratification naturelle des espaces de fonctions differentiables reeles et le theorem de la pseudo-isotopie”, Inst. Hautes Etudes Sci. Publ. Math., 1970, no. 39, 5–173 | MR | Zbl

[2] Hatcher A., Wagoner J., Pseudo-isotopies of compact manifolds, Astérisque, 6, 1973 | MR | Zbl

[3] Volodin I. A., “Obobschennye gruppy Uaitkheda i psevdoizotopii”, UMN, 27:5 (1972), 229–230 | MR | Zbl

[4] Igusa K., “What happens to Hatcher's and Wagoner's formula for $\pi _0\mathscr C(M)$ when the first Postnikov invariant of $M$ is nontrivial?”, Lect. Notes Math., 1046, 1984, 104–172 | MR

[5] Igusa K., “Higher singularities of smooth functions are unnecessary”, Ann. Math., 119 (1984), 1–58 | DOI | MR | Zbl

[6] Akhmetev P. M., “Gladkie pogruzheniya mnogoobrazii malykh razmernostei”, Matem. sb., 185:10 (1994), 3–26 | MR | Zbl

[7] Wells R., “Cobordism of immersions”, Topology, 5 (1966), 281–294 | DOI | MR | Zbl

[8] Koschorke U., “Vector fields and another vector bundle morphism”, Lecture Notes in Math., 847, Springer-Verlag, Berlin–New York, 1981 | MR | Zbl

[9] Szucs A., “Cobordism groups of immersions with restricted self-intersection”, Osaka J. Math., 21 (1984), 71–80 | MR

[10] Szucs A., “On the cobordism groups of immersions and embeddings”, Math. Proc. of Camb. Phil. Soc., 109 (1981), 343–349 | DOI | MR

[11] Szucs A., Cobordism groups of immersions of oriented manifolds, Preprint, 1992 | MR

[12] Eliashberg Ya. M., “Khirurgiya osobennostei gladkikh otobrazhenii”, Izv. AN SSSR. Ser. matem., 36:6 (1972), 1321–1347 | MR | Zbl

[13] Chess D., “Singularity theory and configuration space models of $\Omega^n S^n$ of non-connected spaces”, Topology and its applications, 25 (1987), 313–338 | DOI | MR | Zbl

[14] Milnor Dzh., Vvedenie v algebraicheskuyu $K$-teoriyu, Mir, M., 1974 | MR | Zbl

[15] Arnold V. I., Teoriya katastrof, Nauka, M., 1991 | MR

[16] Szucs A., Models of the loop spaces of Thom spaces and eleminating singularities, Preprint, 1993