Projective transformations and symmetries of differential equation
Sbornik. Mathematics, Tome 186 (1995) no. 12, pp. 1711-1726 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

The group properties of the equations of geodesics on a pseudo-Riemannian manifold $M^n$ are considered, in particular, when these are written as a system of second-order differential equations (resolved with respect to the second derivatives) with third-degree polynomials in the derivatives of the unknown function on the right-hand sides. Each point symmetry of such systems is proved to be a projective transformation. A connection between projective transformation in $M^n$ and symmetries of Hamiltonian systems and Lie–Bäcklund transformations of Hamilton–Jacobi equation with quadratic Hamiltonians is discovered. This provides tools for developing a systematic geometric approach to defining and investigating point and non-point symmetries of large classes of differential equations and partial differential equations and to obtaining their solutions. The dimension of the maximal symmetry group for system of second-order ordinary differential equations resolved with respect to the higher derivatives is found, and this group is proved to be the projective group. As a consequence, the dimension of the maximal symmetry group of the Newton equations is found. In case of three spatial dimensions this group (which is a 24-dimensional projective group) is proved to have as a subgroup the Poincaré group, which is fundamental for special relativity theory.
@article{SM_1995_186_12_a1,
     author = {A. V. Aminova},
     title = {Projective transformations and symmetries of differential equation},
     journal = {Sbornik. Mathematics},
     pages = {1711--1726},
     year = {1995},
     volume = {186},
     number = {12},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_1995_186_12_a1/}
}
TY  - JOUR
AU  - A. V. Aminova
TI  - Projective transformations and symmetries of differential equation
JO  - Sbornik. Mathematics
PY  - 1995
SP  - 1711
EP  - 1726
VL  - 186
IS  - 12
UR  - http://geodesic.mathdoc.fr/item/SM_1995_186_12_a1/
LA  - en
ID  - SM_1995_186_12_a1
ER  - 
%0 Journal Article
%A A. V. Aminova
%T Projective transformations and symmetries of differential equation
%J Sbornik. Mathematics
%D 1995
%P 1711-1726
%V 186
%N 12
%U http://geodesic.mathdoc.fr/item/SM_1995_186_12_a1/
%G en
%F SM_1995_186_12_a1
A. V. Aminova. Projective transformations and symmetries of differential equation. Sbornik. Mathematics, Tome 186 (1995) no. 12, pp. 1711-1726. http://geodesic.mathdoc.fr/item/SM_1995_186_12_a1/

[1] Olver P., Prilozheniya grupp Li k differentsialnym uravneniyam, Mir, M., 1989 | MR | Zbl

[2] Birkgof G., Gidrodinamika. Postanovka zadach, rezultaty i podobie, IL, M., 1954

[3] Ovsyannikov M. V., Gruppovoi analiz differentsialnykh uravnenii, Nauka, M., 1978 | MR

[4] Ibragimov N. Kh., Gruppy preobrazovanii v matematicheskoi fizike, Nauka, M., 1983 | MR

[5] Anderson R. L., Ibragimov N. H., Lie–Backlund transformations in applications, SIAM Studies in Appl. Math., 1, Philadelphia, 1979 | MR

[6] Vinogradov A. M., Krasilschik I. S., Lychagin V. V., Vvedenie v geometriyu nelineinykh differentsialnykh uravnenii, Nauka, M., 1986 | MR

[7] Mischenko A. S., Fomenko A. T., “Obobschennyi metod integrirovaniya gamiltonovykh sistem”, Funkts. analiz i ego prilozh., 12:2 (1978), 46–56 | MR | Zbl

[8] Dubrovin B. A., Krichever I. M., Novikov S. P., “Integriruemye sistemy, I”, Itogi nauki i tekhn. Sovremennye probl. matematiki. Fundamentalnye napravleniya, 4, VINITI, M., 1985, 179–284 | MR

[9] Kartan E., Prostranstva affinnoi, proektivnoi i konformnoi svyaznosti, Kazan, 1962, s. 119–144 | MR

[10] Tresse A., “Sur les invariants differentielles groupes continus de transformations”, Acta Math., 1894, 1–88 | DOI | MR | Zbl

[11] Dryuma V. S., Geometricheskaya teoriya nelineinykh dinamicheskikh sistem, Preprint IM s VTs AN MSSR, Kishinev, 1986

[12] Ibragimov N. Kh., Azbuka gruppovogo analiza, Znanie, M., 1989 | MR | Zbl

[13] Aminova A. V., “The Internal symmetries of test body world lines”, XIII Int. Conf. on General Relat. and Gravit., Abstr. of Contribut. Papers (Huerta Grande. Cordoba. Argentina, June 28–July 4), 1992, 123

[14] Pontryagin L. S., Nepreryvnye gruppy, Nauka, M., 1973 | MR | Zbl

[15] Fubini G., “Sui gruppi trasformazioni geodetiche”, Mem. Acc. Torino. Cl. Fif. Mat. Nat., 53:2 (1903), 261–313 | Zbl

[16] Aminova A. V., “Algebry Li proektivnykh dvizhenii prostranstv $V(0)$ lorentsevoi signatury”, Izvestiya vuzov. Matematika, 1990, no. 12, 3–13 | MR | Zbl

[17] Arnold V. I., Matematicheskie metody klassicheskoi mekhaniki, Nauka, M., 1979 | MR | Zbl

[18] Arnold V. I., Givental A. B., “Simplekticheskaya geometriya”, Itogi nauki i tekhn. Sovremennye probl. matematiki. Fundamentalnye napravleniya, 4, VINITI, M., 1985, 7–139 | MR

[19] Goldstein G., Klassicheskaya mekhanika, Gostekhizdat, M., 1957

[20] Novikov S. P., Fomenko A. T., Sovremennaya geometriya: Metody i prilozheniya, Nauka, M., 1986 | MR

[21] Akhiezer A. I., Peletminskii S. V., Polya i fundamentalnye vzaimodeistviya, Nauk. dumka, Kiev, 1986 | MR

[22] Ibragimov N. Kh., “K teorii grupp preobrazovanii Li–Beklunda”, Matem. sb., 109:2 (1979), 229–253 | MR | Zbl

[23] Fokas A. S., “Group theoretical aspects of constants of motion and separable solutions in classical mechanics”, J. Math. Anal. App., 68 (1979), 347–370 | DOI | MR | Zbl

[24] Focas A. S., Invariants, Lie–Backlund operators and Backlund transformations, Thesis for the Degree of Doctor of Philosophy, California Institute of Technology, Passadena, California, 1979

[25] Sing Dzh. L., Tenzornye metody v dinamike, IL, M., 1947

[26] Eizenkhart L. P., Nepreryvnye gruppy preobrazovanii, IL, M., 1947

[27] Kobayasi Sh., Nomidzu K., Osnovy differentsialnoi geometrii, Nauka, M., 1981

[28] Eizenkhart L. P., Rimanova geometriya, IL, M., 1948

[29] Thomas T. Y., “On the projective and equi-projective geometries of paths”, Proc. Nat. Acad. Sci., 2 (1925), 199–203 | DOI

[30] Deszcz R., “Uwagi o kolineacjach rzutowych w pewnych klasach przestrzeni Riemanna”, Pr. nauk. Inst. matem. i fiz. teor. PWr., 1973, no. 8, 3–9 | MR | Zbl

[31] Kobayasi Sh., Gruppy preobrazovanii v differentsialnoi geometrii, Nauka, M., 1986 | MR

[32] Egorov I. P., Dvizheniya v prostranstvakh affinnoi svyaznosti, Izd-vo Kazan. un-ta, Kazan, 1965 | MR

[33] Shirokov P. A., “O skhodyaschikhsya napravleniyakh v rimanovykh prostranstvakh”, Izv. Kazansk. fiz.-matem. obsch., 7:3 (1934–1935), 77–78

[34] Nagano T., Ochiai T., “On compact Riemannian manifolds admitting essential projective transformations”, J. Fac. Sci. Univ. Tokyo. Sec. 1A, 33:2 (1986), 233–246 | MR | Zbl

[35] Kim In-Bae, “Special concircular vector fields in Riemannian manifolds”, Hiroshima Math. J., 12:1 (1982), 77–91 | MR | Zbl

[36] Schouten I. A., Ricci-Calculus, Springer-Verlag, 1954 | Zbl

[37] Aminova A. V., “Psevdorimanovy mnogoobraziya s obschimi geodezicheskimi”, UMN, 48:2 (1993), 107–164 | MR | Zbl