On boundary conditions for stochastic evolution equations with an~extremally chaotic source
Sbornik. Mathematics, Tome 186 (1995) no. 12, pp. 1693-1709
Voir la notice de l'article provenant de la source Math-Net.Ru
Stochastic differential equation of the form
$$
d\xi_t=A\xi_t\,dt+Bd\eta_t^0, \qquad t\in I=(t_0,t_1),
$$
are considered for a generalized random field
$$
\xi_t\equiv(\varphi,\xi_t), \quad \varphi\in C_0^\infty(G),
$$
in the domain $G\subseteq\mathbb R^d$ with stochastic boundary conditions on the boundary corresponding to an operator $A\leqslant0$ and an extremal operator coefficient $B$ (strengthening the chaotic source $d\eta^0_t$ of ‘white noise’ type).
@article{SM_1995_186_12_a0,
author = {S. A. Albeverio and T. J. Lyons and Yu. A. Rozanov},
title = {On boundary conditions for stochastic evolution equations with an~extremally chaotic source},
journal = {Sbornik. Mathematics},
pages = {1693--1709},
publisher = {mathdoc},
volume = {186},
number = {12},
year = {1995},
language = {en},
url = {http://geodesic.mathdoc.fr/item/SM_1995_186_12_a0/}
}
TY - JOUR AU - S. A. Albeverio AU - T. J. Lyons AU - Yu. A. Rozanov TI - On boundary conditions for stochastic evolution equations with an~extremally chaotic source JO - Sbornik. Mathematics PY - 1995 SP - 1693 EP - 1709 VL - 186 IS - 12 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/SM_1995_186_12_a0/ LA - en ID - SM_1995_186_12_a0 ER -
%0 Journal Article %A S. A. Albeverio %A T. J. Lyons %A Yu. A. Rozanov %T On boundary conditions for stochastic evolution equations with an~extremally chaotic source %J Sbornik. Mathematics %D 1995 %P 1693-1709 %V 186 %N 12 %I mathdoc %U http://geodesic.mathdoc.fr/item/SM_1995_186_12_a0/ %G en %F SM_1995_186_12_a0
S. A. Albeverio; T. J. Lyons; Yu. A. Rozanov. On boundary conditions for stochastic evolution equations with an~extremally chaotic source. Sbornik. Mathematics, Tome 186 (1995) no. 12, pp. 1693-1709. http://geodesic.mathdoc.fr/item/SM_1995_186_12_a0/