An integral boundary-value problem in a layer for a system of linear partial differential equations
Sbornik. Mathematics, Tome 186 (1995) no. 11, pp. 1671-1692 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

Criteria for the well-posedness and strong well-posedness (smoothness properties of solutions in comparison with given functions) of a boundary-value problem in an infinite layer $\mathbb R^n\times[0,T]$ are obtained for an evolution linear system of partial differential equations. The problem is studied in classes of functions of finite smoothness and with polynomial growth. The boundary condition has an integral form and contains an arbitrary linear differential operator in the space variables. The dependence of the well-posedness of this problem on the thickness $T$ of the layer in question is studied.
@article{SM_1995_186_11_a5,
     author = {L. V. Fardigola},
     title = {An integral boundary-value problem in a~layer for a~system of linear partial differential equations},
     journal = {Sbornik. Mathematics},
     pages = {1671--1692},
     year = {1995},
     volume = {186},
     number = {11},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_1995_186_11_a5/}
}
TY  - JOUR
AU  - L. V. Fardigola
TI  - An integral boundary-value problem in a layer for a system of linear partial differential equations
JO  - Sbornik. Mathematics
PY  - 1995
SP  - 1671
EP  - 1692
VL  - 186
IS  - 11
UR  - http://geodesic.mathdoc.fr/item/SM_1995_186_11_a5/
LA  - en
ID  - SM_1995_186_11_a5
ER  - 
%0 Journal Article
%A L. V. Fardigola
%T An integral boundary-value problem in a layer for a system of linear partial differential equations
%J Sbornik. Mathematics
%D 1995
%P 1671-1692
%V 186
%N 11
%U http://geodesic.mathdoc.fr/item/SM_1995_186_11_a5/
%G en
%F SM_1995_186_11_a5
L. V. Fardigola. An integral boundary-value problem in a layer for a system of linear partial differential equations. Sbornik. Mathematics, Tome 186 (1995) no. 11, pp. 1671-1692. http://geodesic.mathdoc.fr/item/SM_1995_186_11_a5/

[1] Mamyan A. Kh., “Obschie granichnye zadachi v sloe”, DAN SSSR, 267:2 (1982), 292–296 | MR | Zbl

[2] Samarskii A. A., “O nekotorykh problemakh teorii differentsialnykh uravnenii”, Differents. uravneniya, 16:11 (1980), 1925–1935 | MR | Zbl

[3] Dezin A. A., Obschie voprosy teorii granichnykh zadach, Nauka, M., 1980 | MR | Zbl

[4] Nakhushev A. M., “Kraevye zadachi dlya nagruzhennykh integro-differentsialnykh uravnenii giperbolicheskogo tipa i nekotorye ikh prilozheniya k prognozu pochvennoi vlagi”, Differents. uravneniya, 15:1 (1979), 95–105 | MR

[5] Ptashnik B. I., Nekorrektnye granichnye zadachi dlya differentsialnykh uravnenii s chastnymi proizvodnymi, Naukova dumka, Kiev, 1984 | MR

[6] Hadamard J., Le problème de Cauchy et les équations aux dérivées partielles lineaires hyperboliques, Hermann, Paris, 1932 | Zbl

[7] Gelfand I. M., Shilov G. E., Nekotorye voprosy teorii differentsialnykh uravnenii, Fizmatgiz, M., 1958 | MR | Zbl

[8] Borok V. M., “Kvaziregulyarnye kraevye zadachi v polose”, Izv. vuzov. Matem., 1989, no. 11, 3–9 | MR | Zbl

[9] Vilents I. L., “Klassy edinstvennosti resheniya obschei kraevoi zadachi v sloe dlya sistem lineinykh differentsialnykh uravnenii v chastnykh proizvodnykh”, Dokl. AN Ukr. SSR. Ser. A, 1974, no. 3, 195–197 | Zbl

[10] Makarov A. A., “O neobkhodimykh i dostatochnykh usloviyakh korrektnoi razreshimosti kraevoi zadachi v sloe dlya sistem differentsialnykh uravnenii v chastnykh proizvodnykh”, Differents. uravneniya, 17:2 (1981), 320–324 | MR | Zbl

[11] Fardigola L. V., “Kriterii korrektnosti v sloe kraevoi zadachi s integralnym usloviem”, Ukr. matem. zhurn., 45:11 (1990), 1546–1551 | MR

[12] Borok V. M., “Korrektno razreshimye kraevye zadachi v beskonechnom sloe dlya sistem lineinykh uravnenii v chastnykh proizvodnykh”, Izv. AN SSSR. Ser. matem., 35:1 (1971), 185–201 | MR | Zbl

[13] Fardigola L. V., “Integralnaya kraevaya zadacha v sloe”, Matem. zametki, 53:6 (1993), 122–129 | MR | Zbl

[14] Seidenberg A., “A new decision method for elementary algebra”, Ann. Math. Ser. 2, 60:2 (1954), 365–374 | DOI | MR | Zbl

[15] Hörmander L., The analysis of linear differential operators. V. 2. Differential operators with constant coefficients, Springer-Verlag, Berlin–New York–Tokyo, 1983

[16] Whitney H., “Elementary structure of real algebraic varieties”, Ann. Math. Ser. 2, 66:3 (1957), 545–556 | DOI | MR | Zbl

[17] Gelfand I. M., Shilov G. E., Prostranstva osnovnykh i obobschennykh funktsii, Fizmatgiz, M., 1958 | MR | Zbl

[18] Van der Waerden B. L., Algebra, V. I, Springer-Verlag, Berlin–Heidelberg–New York, 1971