An integral boundary-value problem in a~layer for a~system of linear partial differential equations
Sbornik. Mathematics, Tome 186 (1995) no. 11, pp. 1671-1692

Voir la notice de l'article provenant de la source Math-Net.Ru

Criteria for the well-posedness and strong well-posedness (smoothness properties of solutions in comparison with given functions) of a boundary-value problem in an infinite layer $\mathbb R^n\times[0,T]$ are obtained for an evolution linear system of partial differential equations. The problem is studied in classes of functions of finite smoothness and with polynomial growth. The boundary condition has an integral form and contains an arbitrary linear differential operator in the space variables. The dependence of the well-posedness of this problem on the thickness $T$ of the layer in question is studied.
@article{SM_1995_186_11_a5,
     author = {L. V. Fardigola},
     title = {An integral boundary-value problem in a~layer for a~system of linear partial differential equations},
     journal = {Sbornik. Mathematics},
     pages = {1671--1692},
     publisher = {mathdoc},
     volume = {186},
     number = {11},
     year = {1995},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_1995_186_11_a5/}
}
TY  - JOUR
AU  - L. V. Fardigola
TI  - An integral boundary-value problem in a~layer for a~system of linear partial differential equations
JO  - Sbornik. Mathematics
PY  - 1995
SP  - 1671
EP  - 1692
VL  - 186
IS  - 11
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SM_1995_186_11_a5/
LA  - en
ID  - SM_1995_186_11_a5
ER  - 
%0 Journal Article
%A L. V. Fardigola
%T An integral boundary-value problem in a~layer for a~system of linear partial differential equations
%J Sbornik. Mathematics
%D 1995
%P 1671-1692
%V 186
%N 11
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SM_1995_186_11_a5/
%G en
%F SM_1995_186_11_a5
L. V. Fardigola. An integral boundary-value problem in a~layer for a~system of linear partial differential equations. Sbornik. Mathematics, Tome 186 (1995) no. 11, pp. 1671-1692. http://geodesic.mathdoc.fr/item/SM_1995_186_11_a5/