On the flow the water under a still stone
Sbornik. Mathematics, Tome 186 (1995) no. 11, pp. 1621-1658 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

Asymptotics of solutions of Stokes and Navier–Stokes systems is investigated at a point of tangency of smooth surfaces on which adhesion conditions are imposed. The leading terms of the asymptotics are described by special solutions of the resulting equation on the plane, which is similar to the Reynolds equation and generates at the origin. Complete asymptotic expansions are constructed (for any Reynolds number). Justification of these expansions is based on asymptotically exact estimates of the solutions in function spaces with weight norms. Solvability of the Navier–Stokes problem is established for small Reynolds numbers only.
@article{SM_1995_186_11_a3,
     author = {S. A. Nazarov},
     title = {On the flow the~water under a~still stone},
     journal = {Sbornik. Mathematics},
     pages = {1621--1658},
     year = {1995},
     volume = {186},
     number = {11},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_1995_186_11_a3/}
}
TY  - JOUR
AU  - S. A. Nazarov
TI  - On the flow the water under a still stone
JO  - Sbornik. Mathematics
PY  - 1995
SP  - 1621
EP  - 1658
VL  - 186
IS  - 11
UR  - http://geodesic.mathdoc.fr/item/SM_1995_186_11_a3/
LA  - en
ID  - SM_1995_186_11_a3
ER  - 
%0 Journal Article
%A S. A. Nazarov
%T On the flow the water under a still stone
%J Sbornik. Mathematics
%D 1995
%P 1621-1658
%V 186
%N 11
%U http://geodesic.mathdoc.fr/item/SM_1995_186_11_a3/
%G en
%F SM_1995_186_11_a3
S. A. Nazarov. On the flow the water under a still stone. Sbornik. Mathematics, Tome 186 (1995) no. 11, pp. 1621-1658. http://geodesic.mathdoc.fr/item/SM_1995_186_11_a3/

[1] Reinolds O., Gidrodinamicheskaya teoriya smazki, Gostekhizdat, M.–L., 1934

[2] Novikov P. A., Lyubin L. Ya., Gidromekhanika schelevykh sistem, Nauka i tekhnika, Minsk, 1988

[3] Bayada G., Chambat M., “The transition between the Stokes equations and the Reynolds equation: a mathematical proof”, Appl. Math. and Optimiz., 14:1 (1986), 73–93 | DOI | MR | Zbl

[4] Nazarov S. A., “Asimptotika resheniya zadachi Nave–Stoksa o techenii tonkogo sloya zhidkosti”, Sibirskii matem. zhurnal, 31:2 (1990), 131–144 | MR | Zbl

[5] Ladyzhenskaya O. A., Matematicheskie voprosy dinamiki vyazkoi neszhimaemoi zhidkosti, Nauka, M., 1970 | MR

[6] Temam R., Uravnenie Nave–Stoksa. Teoriya i chislennyi analiz, Mir, M., 1981 | MR | Zbl

[7] Nazarov S. A., “Asymptotics of the Stokes system solutions at a surfaces contact point”, C. R. Acad. Sci. Paris. Ser. 1, 312 (1991), 207–211 | MR | Zbl

[8] Goldenveizer A. L., Teoriya uprugikh obolochek, Nauka, M., 1965

[9] Dzhavadov M. G., “Asimptotika resheniya kraevoi zadachi dlya ellipticheskikh uravnenii vtorogo poryadka v tonkikh oblastyakh”, Differents. uravneniya, 5:10 (1968), 1901–1909

[10] Nazarov S. A., “Struktura reshenii ellipticheskikh kraevykh zadach v tonkikh oblastyakh”, Vestn. LGU, 1982, no. 7, 65–68 | Zbl

[11] Kondratev V. A., “Kraevye zadachi dlya ellipticheskikh uravnenii v oblastyakh s konicheskimi i uglovymi tochkami”, Tr. MMO, 16, URSS, M., 1967, 219–292

[12] Mazya V. G., Plamenevskii B. A., “O koeffitsientakh v asimptotike reshenii ellipticheskikh kraevykh zadach v oblastyakh s konicheskimi tochkami”, Math. Nachr., 1977, no. 76, 29–60 | MR | Zbl

[13] Nazarov S. A., Plamenevskii B. A., Ellipticheskie zadachi v oblastyakh s kusochno gladkoi granitsei, Nauka, M., 1991

[14] Agmon S., Douglis A., Nirenberg L., “Estimates near the boundary for solutions of elliptic partial differential equations satisfying general boundary conditions, 2”, Comm. Pure Appl. Math., 17:1 (1964), 35–92 | DOI | MR | Zbl

[15] Neĉas J., Equations aux dérivées partielles, Presses de l'Université de Montréal, 1965

[16] Ladyzhenskaya O. A., Kraevye zadachi matematicheskoi fiziki, Nauka, M., 1973 | MR