Rational approximation of functions of several variables with finite Hardy variation
Sbornik. Mathematics, Tome 186 (1995) no. 11, pp. 1599-1620 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

The rate of rational approximation of functions of $N$ variables with given modulus of continuity and bounded Hardy variation on the unit N-cube $[0,1]^N$ is considered. In particular, if a function $f(x)$ on $[0,1]^N$ has bounded Hardy variation and $f \in\operatorname{Lip}\alpha$, $0<\alpha<1$ then it can be seen from the central result of this paper that $$ R_n(f,[0,1]^N)\leqslant C\frac{\ln^2 n}n\,. $$
@article{SM_1995_186_11_a2,
     author = {A. P. Bulanov},
     title = {Rational approximation of functions of several variables with finite {Hardy} variation},
     journal = {Sbornik. Mathematics},
     pages = {1599--1620},
     year = {1995},
     volume = {186},
     number = {11},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_1995_186_11_a2/}
}
TY  - JOUR
AU  - A. P. Bulanov
TI  - Rational approximation of functions of several variables with finite Hardy variation
JO  - Sbornik. Mathematics
PY  - 1995
SP  - 1599
EP  - 1620
VL  - 186
IS  - 11
UR  - http://geodesic.mathdoc.fr/item/SM_1995_186_11_a2/
LA  - en
ID  - SM_1995_186_11_a2
ER  - 
%0 Journal Article
%A A. P. Bulanov
%T Rational approximation of functions of several variables with finite Hardy variation
%J Sbornik. Mathematics
%D 1995
%P 1599-1620
%V 186
%N 11
%U http://geodesic.mathdoc.fr/item/SM_1995_186_11_a2/
%G en
%F SM_1995_186_11_a2
A. P. Bulanov. Rational approximation of functions of several variables with finite Hardy variation. Sbornik. Mathematics, Tome 186 (1995) no. 11, pp. 1599-1620. http://geodesic.mathdoc.fr/item/SM_1995_186_11_a2/

[1] Bulanov A. P., “Ratsionalnye priblizheniya nepreryvnykh funktsii s konechnym izmeneniem”, Izv. AN SSSR. Seriya matem., 39:5 (1975), 1142–1181 | MR | Zbl

[2] Bulanov A. P., “Razlozhenie edinitsy v summu ratsionalnykh funktsii mnogikh peremennykh”, Teoriya funktsii i priblizhenii, Trudy Saratovskoi zimnei shkoly, chast 1 (24 yanvarya – 5 fevralya 1982 g.), Saratovskii universitet, 1983, 127–138 | MR

[3] Clarkson J. A., Adams C. R., “On definition of bounded variation for functions of two variables”, Transactions of the American Mathematical Society, 35:4 (1933), 824–855 | DOI | MR

[4] Golubov B. I., “Khardi variatsiya”, Matematicheskaya entsiklopediya, T. 5, M., 1985, stolbtsy 768–769

[5] Nikolskii S. M., Priblizhenie funktsii mnogikh peremennykh i teoremy vlozheniya, Nauka, M., 1977 | MR

[6] Gonchar A. A., “O skorosti ratsionalnoi approksimatsii nekotorykh analiticheskikh funktsii”, Matem. sb., 105(147) (1978), 147–163 | MR | Zbl

[7] Bulanov A. P., “Asimptotika dlya naimenshikh uklonenii funktsii $\operatorname {sign}x$ ot ratsionalnykh funktsii”, Matem. sb., 96(138) (1975), 171–188 | MR | Zbl

[8] Freyd G., “Über die Approximation reeller Funktionen durch rationale gebrochene Funktionen”, Acta Math. Acad. Sci. Hungaricae, 17(3–4) (1966), 313–324 | DOI | MR

[9] Petrushev P. P., “Ravnomernye ratsionalnye approksimatsii funktsii s konechnym izmeneniem”, PLISKA, V'lgarski matematicheski studii, 1 (1977), 145–155 | MR | Zbl

[10] Pekarskii A. A., “Metod posledovatelnykh usrednenii v teorii ratsionalnoi approksimatsii”, Doklady AN BSSR, XXI:10 (1977), 876–878 | MR

[11] Petrush P. P., Popov V. A., Rational approximation of real functions, Camb. Univ. press, Cambridge, 1987 | MR | Zbl

[12] Dolzhenko E. P., “Sravnenie skorostei ratsionalnoi i polinomialnoi approksimatsii”, Matem. zametki, I:3 (1967), 313–320