Rational approximation of functions of several variables with finite Hardy variation
Sbornik. Mathematics, Tome 186 (1995) no. 11, pp. 1599-1620

Voir la notice de l'article provenant de la source Math-Net.Ru

The rate of rational approximation of functions of $N$ variables with given modulus of continuity and bounded Hardy variation on the unit N-cube $[0,1]^N$ is considered. In particular, if a function $f(x)$ on $[0,1]^N$ has bounded Hardy variation and $f \in\operatorname{Lip}\alpha$, $0\alpha1$ then it can be seen from the central result of this paper that $$ R_n(f,[0,1]^N)\leqslant C\frac{\ln^2 n}n\,. $$
@article{SM_1995_186_11_a2,
     author = {A. P. Bulanov},
     title = {Rational approximation of functions of several variables with finite {Hardy} variation},
     journal = {Sbornik. Mathematics},
     pages = {1599--1620},
     publisher = {mathdoc},
     volume = {186},
     number = {11},
     year = {1995},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_1995_186_11_a2/}
}
TY  - JOUR
AU  - A. P. Bulanov
TI  - Rational approximation of functions of several variables with finite Hardy variation
JO  - Sbornik. Mathematics
PY  - 1995
SP  - 1599
EP  - 1620
VL  - 186
IS  - 11
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SM_1995_186_11_a2/
LA  - en
ID  - SM_1995_186_11_a2
ER  - 
%0 Journal Article
%A A. P. Bulanov
%T Rational approximation of functions of several variables with finite Hardy variation
%J Sbornik. Mathematics
%D 1995
%P 1599-1620
%V 186
%N 11
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SM_1995_186_11_a2/
%G en
%F SM_1995_186_11_a2
A. P. Bulanov. Rational approximation of functions of several variables with finite Hardy variation. Sbornik. Mathematics, Tome 186 (1995) no. 11, pp. 1599-1620. http://geodesic.mathdoc.fr/item/SM_1995_186_11_a2/