Canonical affinor structures of classical type on regular $\Phi$-spaces
Sbornik. Mathematics, Tome 186 (1995) no. 11, pp. 1551-1580 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

For arbitrary regular $\Phi$-spaces all canonical affinor structures of classical type, that is, the almost product, almost complex, and, more generally, $f$-structures ($f^3+f=0$), are described. Criteria for existence are indicated and computation algorithms for such structures are presented. In particular, for homogeneous $\Phi$-spaces of arbitrary finite order, precise computational formulae are indicated, which were earlier for $n=3$ and (partially) for $n=5$. All the above-mentioned geometric result are obtained using the complete solution of a general algebraic problem about the roots of the equations $x^2=\pm1$ and $x^3+x=0$ in the quotient ring of polynomials and in the corresponding operator ring.
@article{SM_1995_186_11_a0,
     author = {V. V. Balashchenko and N. A. Stepanov},
     title = {Canonical affinor structures of classical type on regular $\Phi$-spaces},
     journal = {Sbornik. Mathematics},
     pages = {1551--1580},
     year = {1995},
     volume = {186},
     number = {11},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_1995_186_11_a0/}
}
TY  - JOUR
AU  - V. V. Balashchenko
AU  - N. A. Stepanov
TI  - Canonical affinor structures of classical type on regular $\Phi$-spaces
JO  - Sbornik. Mathematics
PY  - 1995
SP  - 1551
EP  - 1580
VL  - 186
IS  - 11
UR  - http://geodesic.mathdoc.fr/item/SM_1995_186_11_a0/
LA  - en
ID  - SM_1995_186_11_a0
ER  - 
%0 Journal Article
%A V. V. Balashchenko
%A N. A. Stepanov
%T Canonical affinor structures of classical type on regular $\Phi$-spaces
%J Sbornik. Mathematics
%D 1995
%P 1551-1580
%V 186
%N 11
%U http://geodesic.mathdoc.fr/item/SM_1995_186_11_a0/
%G en
%F SM_1995_186_11_a0
V. V. Balashchenko; N. A. Stepanov. Canonical affinor structures of classical type on regular $\Phi$-spaces. Sbornik. Mathematics, Tome 186 (1995) no. 11, pp. 1551-1580. http://geodesic.mathdoc.fr/item/SM_1995_186_11_a0/

[1] Stepanov N. A., “Odnorodnye $3$-tsiklicheskie prostranstva”, Izv. VUZov. Matematika, 1967, no. 12, 65–74 | MR | Zbl

[2] Wolf J., Gray A., “Homogeneous spaces defined by Lie group automorphisms”, J. Diff. Geom., 2:1–2 (1968), 77–159 | MR

[3] Gray A., “Riemannian manifolds with geodesic symmetries of order $3$”, J. Diff. Geom., 7:3–4 (1972), 343–369 | MR | Zbl

[4] Tricerri F., Vanhecke L., Homogeneous structures on Riemannian manifolds, Lecture Note Ser., 83, London Math. Soc., 1983 | MR

[5] Sekigawa K., Yoshida H., “Riemannian $3$-cymmetric spaces defined by some outer automorphisms of compact Lie groups”, Tensor, 40:3 (1983), 261–268 | MR | Zbl

[6] Salamon S. M., “Minimal surfaces and symmetric spaces”, Diff. Geom. Proc. Colloq. Santiago de Compostela, 1985, 103–114 | MR | Zbl

[7] Balaschenko V. V., Churbanov Yu. D., “Invariantnye struktury na odnorodnykh $\Phi $-prostranstvakh poryadka $5$”, UMN, 45:1 (1990), 169–170 | MR

[8] Stepanov N. A., “Pochti kompleksnye struktury na $\varphi $-prostranstvakh”, 3-ya mezhvuz. nauchn. konf. po probl. geometrii, Tezisy dokl., Kazan, 1967, 158–160

[9] Stepanov N. A., Odnorodnye prostranstva, porozhdennye endomorfizmami grupp Li, Dis. ...kand. fiz.-matem. nauk, GGPI, Gorkii, 1967

[10] Kovalskii O., Obobschennye simmetricheskie prostranstva, Mir, M., 1984 | MR

[11] Borel A., Hirzebruch F., “Characteristic classes and homogeneous spaces, I”, Amer. J. Math., 80:2 (1958), 458–538 | DOI | MR

[12] Komrakov B. P., “Odnorodnye prostranstva, porozhdennye avtomorfizmami, i invariantnye geometricheskie struktury”, Problemy geometrii. Itogi nauki i tekhniki, 7, 1975, 81–104 | MR | Zbl

[13] Sanchez C. U., “Regular $s$-structure on spheres”, Indiana Univ. Math. J., 37:1 (1988), 165–180 | DOI | MR | Zbl

[14] Borel A., Serre J. P., “Detérmination des $p$-puissances réduites de Steenrod dans la cohomologie des groupes classiques. Applications”, C. R. Acad. Sci. Paris, 233 (1951), 680–682 | MR | Zbl

[15] Frölicher A., “Sur differentialgeometrie der komplexen structuren”, Math. Ann., 129:1 (1955), 50–95 | DOI | MR | Zbl

[16] Fukamy T., Ishihara S., “Almost Hermitian structure on $S^6$”, Tôhoku Math. J., 7:3 (1955), 151–156 | DOI | MR

[17] Gray A., “Nearly Kähler manifolds”, J. Diff. Geom., 4:3 (1970), 283–309 | MR | Zbl

[18] Gritsans A. S., “O geometrii killingovykh $f$-mnogoobrazii”, UMN, 45:4 (1990), 149–150 | MR | Zbl

[19] Kiritchenko V. F., “Sur la géométrie des variétés approximativement cosymplectiques”, C. R. Acad. Sci. Paris. Ser. 1, 295:12 (1982), 673–676 | MR | Zbl

[20] Balaschenko V. V., Stepanov N. A., “Kanonicheskie affinornye struktury na regulyarnykh $\Phi $-prostranstvakh”, UMN, 46:1 (1991), 205–206 | MR

[21] Balashchenko V. V., Riemannian geometry of cannonical structures on regular $\Phi $-spaces, Preprint No 174/1994, Fakultät für Mathematik der Ruhr-Universität Bochum, 1994, p. 1–19

[22] Balaschenko V. V., Dashevich O. V., “Geometriya kanonicheskikh struktur na odnorodnykh $\Phi $-prostranstvakh poryadka $4$”, UMN, 49:4 (1994), 153–154 | Zbl

[23] Churbanov Yu. D., “Geometriya spetsialnykh affinornykh struktur odnorodnykh $\Phi $-prostranstv nechetnogo poryadka”, Izv. VUZov. Matematika, 1994, no. 2, 84–86 | MR | Zbl

[24] Stepanov N. A., “Osnovnye fakty teorii $\varphi $-prostranstv”, Izv. VUZov. Matematika, 1967, no. 3, 88–95 | MR | Zbl

[25] Fedenko A. S., Prostranstva s simmetriyami, Izd-vo Belorusskogo un-ta, Minsk, 1977 | MR | Zbl

[26] Khelgason S., Differentsialnaya geometriya i simmetricheskie prostranstva, Mir, M., 1964 | Zbl

[27] Komrakov B. P., Struktury na mnogoobraziyakh i odnorodnye prostranstva, Nauka i tekhnika, Minsk, 1978 | MR

[28] Maltsev A. I., Osnovy lineinoi algebry, Nauka, M., 1970 | Zbl

[29] Yano K., Kon M., Structures on manifolds, World Scientific, Singapore, 1984 | MR | Zbl

[30] Burbaki R., Algebra. Mnogochleny i polya. Uporyadochennye gruppy, Nauka, M., 1965 | MR

[31] Stepanov N. A., “$\varphi $-prostranstva v sluchae polnoi lineinoi gruppy”, Izv. VUZov. Matematika, 1972, no. 3, 70–79 | Zbl

[32] Markus M., Mink Kh., Obzor po teorii matrits i matrichnykh neravenstv, Nauka, M., 1972 | MR

[33] Ermolitskii A. A., “Periodicheskie affinory i $2k$-simmetricheskie prostranstva”, DAN BSSR, 34:2 (1990), 109–111 | MR | Zbl