Canonical affinor structures of classical type on regular $\Phi$-spaces
Sbornik. Mathematics, Tome 186 (1995) no. 11, pp. 1551-1580
Voir la notice de l'article provenant de la source Math-Net.Ru
For arbitrary regular $\Phi$-spaces all canonical affinor structures of classical type, that is, the almost product, almost complex, and, more generally, $f$-structures ($f^3+f=0$), are described. Criteria for existence are indicated and computation algorithms for such structures are presented. In particular, for homogeneous $\Phi$-spaces of arbitrary finite order, precise computational formulae are indicated, which were earlier for $n=3$ and (partially) for $n=5$. All the above-mentioned geometric result are obtained using the complete solution of a general algebraic problem about the roots of the equations $x^2=\pm1$ and $x^3+x=0$ in the quotient ring of polynomials and in the corresponding operator ring.
@article{SM_1995_186_11_a0,
author = {V. V. Balashchenko and N. A. Stepanov},
title = {Canonical affinor structures of classical type on regular $\Phi$-spaces},
journal = {Sbornik. Mathematics},
pages = {1551--1580},
publisher = {mathdoc},
volume = {186},
number = {11},
year = {1995},
language = {en},
url = {http://geodesic.mathdoc.fr/item/SM_1995_186_11_a0/}
}
TY - JOUR AU - V. V. Balashchenko AU - N. A. Stepanov TI - Canonical affinor structures of classical type on regular $\Phi$-spaces JO - Sbornik. Mathematics PY - 1995 SP - 1551 EP - 1580 VL - 186 IS - 11 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/SM_1995_186_11_a0/ LA - en ID - SM_1995_186_11_a0 ER -
V. V. Balashchenko; N. A. Stepanov. Canonical affinor structures of classical type on regular $\Phi$-spaces. Sbornik. Mathematics, Tome 186 (1995) no. 11, pp. 1551-1580. http://geodesic.mathdoc.fr/item/SM_1995_186_11_a0/