Canonical affinor structures of classical type on regular $\Phi$-spaces
Sbornik. Mathematics, Tome 186 (1995) no. 11, pp. 1551-1580

Voir la notice de l'article provenant de la source Math-Net.Ru

For arbitrary regular $\Phi$-spaces all canonical affinor structures of classical type, that is, the almost product, almost complex, and, more generally, $f$-structures ($f^3+f=0$), are described. Criteria for existence are indicated and computation algorithms for such structures are presented. In particular, for homogeneous $\Phi$-spaces of arbitrary finite order, precise computational formulae are indicated, which were earlier for $n=3$ and (partially) for $n=5$. All the above-mentioned geometric result are obtained using the complete solution of a general algebraic problem about the roots of the equations $x^2=\pm1$ and $x^3+x=0$ in the quotient ring of polynomials and in the corresponding operator ring.
@article{SM_1995_186_11_a0,
     author = {V. V. Balashchenko and N. A. Stepanov},
     title = {Canonical affinor structures of classical type on regular $\Phi$-spaces},
     journal = {Sbornik. Mathematics},
     pages = {1551--1580},
     publisher = {mathdoc},
     volume = {186},
     number = {11},
     year = {1995},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_1995_186_11_a0/}
}
TY  - JOUR
AU  - V. V. Balashchenko
AU  - N. A. Stepanov
TI  - Canonical affinor structures of classical type on regular $\Phi$-spaces
JO  - Sbornik. Mathematics
PY  - 1995
SP  - 1551
EP  - 1580
VL  - 186
IS  - 11
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SM_1995_186_11_a0/
LA  - en
ID  - SM_1995_186_11_a0
ER  - 
%0 Journal Article
%A V. V. Balashchenko
%A N. A. Stepanov
%T Canonical affinor structures of classical type on regular $\Phi$-spaces
%J Sbornik. Mathematics
%D 1995
%P 1551-1580
%V 186
%N 11
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SM_1995_186_11_a0/
%G en
%F SM_1995_186_11_a0
V. V. Balashchenko; N. A. Stepanov. Canonical affinor structures of classical type on regular $\Phi$-spaces. Sbornik. Mathematics, Tome 186 (1995) no. 11, pp. 1551-1580. http://geodesic.mathdoc.fr/item/SM_1995_186_11_a0/