Periodic points of denumerable topological Markov chains
Sbornik. Mathematics, Tome 186 (1995) no. 10, pp. 1493-1529 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

This paper considers the analytic properties of the Artin–Mazur–Ruelle and Ruelle–Smale zeta functions for denumerable topological Markov chains (abbreviated to TMC) and locally constant functions. The convergence of discrete invariant measures is investigated. An analogue of Chebyshev's asymptotic law for the distribution of prime numbers for periodic trajectories of a special flow constructed with respect to a TMC and a positive locally constant function is obtained.
@article{SM_1995_186_10_a6,
     author = {S. V. Savchenko},
     title = {Periodic points of denumerable topological {Markov} chains},
     journal = {Sbornik. Mathematics},
     pages = {1493--1529},
     year = {1995},
     volume = {186},
     number = {10},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_1995_186_10_a6/}
}
TY  - JOUR
AU  - S. V. Savchenko
TI  - Periodic points of denumerable topological Markov chains
JO  - Sbornik. Mathematics
PY  - 1995
SP  - 1493
EP  - 1529
VL  - 186
IS  - 10
UR  - http://geodesic.mathdoc.fr/item/SM_1995_186_10_a6/
LA  - en
ID  - SM_1995_186_10_a6
ER  - 
%0 Journal Article
%A S. V. Savchenko
%T Periodic points of denumerable topological Markov chains
%J Sbornik. Mathematics
%D 1995
%P 1493-1529
%V 186
%N 10
%U http://geodesic.mathdoc.fr/item/SM_1995_186_10_a6/
%G en
%F SM_1995_186_10_a6
S. V. Savchenko. Periodic points of denumerable topological Markov chains. Sbornik. Mathematics, Tome 186 (1995) no. 10, pp. 1493-1529. http://geodesic.mathdoc.fr/item/SM_1995_186_10_a6/

[1] Alekseev V. M., Yakobson M. V., “Simvolicheskaya dinamika i giperbolicheskie dinamicheskie sistemy”, Dobavlenie k sb. statei: Bouen R., Metody simvolicheskoi dinamiki, Mir, M., 1979, 196–240

[2] Gurevich B. M., “Topologicheskaya entropiya schetnoi tsepi Markova”, DAN SSSR, 187:4 (1969), 715–718 | MR | Zbl

[3] Bowen R., Equilibrium States and the Ergodic Theory of Anosov diffeomorphisms, Lecture Notes in Math., no. 470, Springer, Berlin, 1975 | MR

[4] Gurevich B. M., “A variational characterization of one-dimensional countable state Gibbs random fields”, Z. Wahrscheinlichkeitstheorie verw. Gebiete, 68 (1984), 205–242 | DOI | MR | Zbl

[5] Ruelle D., “Statistical mechanics on a compact set with $\mathbb Z^\nu $-action satisfying expansiveness and specification”, Bull. Amer. Math. Soc., 78 (1972), 988–991 ; Trans. Amer. Math. Soc., 185 (1973), 237–251 | DOI | MR | Zbl | DOI | MR

[6] Ruelle D., Thermodynamic formalism, Addison-Wesley, 1978 | MR

[7] Parry W., Pollicott M., “An analogue of the prime number theorem and closed orbits of Axiom A flows”, Annals of Math., 118 (1983), 573–591 | DOI | MR | Zbl

[8] Chzhun K.–L., Odnorodnye tsepi Markova, Mir, M., 1964

[9] Vere–Jones D., “Geometric ergodicity in denumerable Markov chains”, Quart. J. Math. Oxford, Ser (2), 1962, no. 13, 7–28 | DOI | MR

[10] Takahashi Y., “Shift with orbit basis and realization of one dimensional maps”, Osaka J. Math., 20 (1983), 599–629 | MR | Zbl

[11] Savchenko S. V., “Ravnovesnye sostoyaniya s nepolnymi nositelyami i periodicheskie traektorii”, Matem. zametki (to appear)

[12] Bowen R., Lanford O., “Zeta functions of restrictions of the shift transformation”, Proc. Symp. Pure Math., 14 (1970), 43–50 | MR

[13] Gantmakher F. R., Teoriya matrits, Nauka, M., 1967 | MR

[14] Rudolph D., “A mixing Markov chain with exponentially decaying return time is finitarily Bernoulli”, Ergodic Theory and Dynamical Systems, 2 (1982), 85–97 | DOI | MR | Zbl

[15] Kornfeld I. P., Sinai Ya. G., Fomin S. V., Ergodicheskaya teoriya, Nauka, M., 1980 | MR | Zbl

[16] Keller G., “Circular codes, loop counting, and zeta-functions”, J. of Combinatorial Theory (Series A), 56:1 (1991), 75–83 | DOI | MR | Zbl

[17] Savchenko S. V., “Dzeta-funktsiya i gibbsovskie mery”, UMN, 48:1 (1993), 181–182 | MR | Zbl

[18] Hardy G. H., Divergent series, Oxford, 1949 | MR

[19] Galeeva R. F., Chernov N. I., “Usloviya strogo eksponentsialnogo rosta chisla tsiklov v schetnykh orientirovannykh grafakh”, UMN, 46:4 (1991), 143–144 | MR

[20] Ruelle D., “Generalised zeta functions for Axiom A basic sets”, Bull. Amer. Math. Soc., 82 (1976), 153–156 | DOI | MR | Zbl

[21] Parry W., “An analogue of the prime number theorem for closed orbits of shifts of finite type and their suspensions”, Israel. J. Math., 45 (1983), 41–52 | DOI | MR | Zbl

[22] Parry W., Policott M., Zeta functions and the periodic orbit structure of hyperbolic dynamics, Asterisque, 187–188, 1990 | MR | Zbl

[23] Abramov L. M., “Ob entropii potoka”, DAN SSSR, 128:5 (1959), 873–876 | MR

[24] Prakhar K., Raspredelenie prostykh chisel, Mir, M., 1967 | MR