Periodic points of denumerable topological Markov chains
Sbornik. Mathematics, Tome 186 (1995) no. 10, pp. 1493-1529

Voir la notice de l'article provenant de la source Math-Net.Ru

This paper considers the analytic properties of the Artin–Mazur–Ruelle and Ruelle–Smale zeta functions for denumerable topological Markov chains (abbreviated to TMC) and locally constant functions. The convergence of discrete invariant measures is investigated. An analogue of Chebyshev's asymptotic law for the distribution of prime numbers for periodic trajectories of a special flow constructed with respect to a TMC and a positive locally constant function is obtained.
@article{SM_1995_186_10_a6,
     author = {S. V. Savchenko},
     title = {Periodic points of denumerable topological {Markov} chains},
     journal = {Sbornik. Mathematics},
     pages = {1493--1529},
     publisher = {mathdoc},
     volume = {186},
     number = {10},
     year = {1995},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_1995_186_10_a6/}
}
TY  - JOUR
AU  - S. V. Savchenko
TI  - Periodic points of denumerable topological Markov chains
JO  - Sbornik. Mathematics
PY  - 1995
SP  - 1493
EP  - 1529
VL  - 186
IS  - 10
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SM_1995_186_10_a6/
LA  - en
ID  - SM_1995_186_10_a6
ER  - 
%0 Journal Article
%A S. V. Savchenko
%T Periodic points of denumerable topological Markov chains
%J Sbornik. Mathematics
%D 1995
%P 1493-1529
%V 186
%N 10
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SM_1995_186_10_a6/
%G en
%F SM_1995_186_10_a6
S. V. Savchenko. Periodic points of denumerable topological Markov chains. Sbornik. Mathematics, Tome 186 (1995) no. 10, pp. 1493-1529. http://geodesic.mathdoc.fr/item/SM_1995_186_10_a6/