@article{SM_1995_186_10_a6,
author = {S. V. Savchenko},
title = {Periodic points of denumerable topological {Markov} chains},
journal = {Sbornik. Mathematics},
pages = {1493--1529},
year = {1995},
volume = {186},
number = {10},
language = {en},
url = {http://geodesic.mathdoc.fr/item/SM_1995_186_10_a6/}
}
S. V. Savchenko. Periodic points of denumerable topological Markov chains. Sbornik. Mathematics, Tome 186 (1995) no. 10, pp. 1493-1529. http://geodesic.mathdoc.fr/item/SM_1995_186_10_a6/
[1] Alekseev V. M., Yakobson M. V., “Simvolicheskaya dinamika i giperbolicheskie dinamicheskie sistemy”, Dobavlenie k sb. statei: Bouen R., Metody simvolicheskoi dinamiki, Mir, M., 1979, 196–240
[2] Gurevich B. M., “Topologicheskaya entropiya schetnoi tsepi Markova”, DAN SSSR, 187:4 (1969), 715–718 | MR | Zbl
[3] Bowen R., Equilibrium States and the Ergodic Theory of Anosov diffeomorphisms, Lecture Notes in Math., no. 470, Springer, Berlin, 1975 | MR
[4] Gurevich B. M., “A variational characterization of one-dimensional countable state Gibbs random fields”, Z. Wahrscheinlichkeitstheorie verw. Gebiete, 68 (1984), 205–242 | DOI | MR | Zbl
[5] Ruelle D., “Statistical mechanics on a compact set with $\mathbb Z^\nu $-action satisfying expansiveness and specification”, Bull. Amer. Math. Soc., 78 (1972), 988–991 ; Trans. Amer. Math. Soc., 185 (1973), 237–251 | DOI | MR | Zbl | DOI | MR
[6] Ruelle D., Thermodynamic formalism, Addison-Wesley, 1978 | MR
[7] Parry W., Pollicott M., “An analogue of the prime number theorem and closed orbits of Axiom A flows”, Annals of Math., 118 (1983), 573–591 | DOI | MR | Zbl
[8] Chzhun K.–L., Odnorodnye tsepi Markova, Mir, M., 1964
[9] Vere–Jones D., “Geometric ergodicity in denumerable Markov chains”, Quart. J. Math. Oxford, Ser (2), 1962, no. 13, 7–28 | DOI | MR
[10] Takahashi Y., “Shift with orbit basis and realization of one dimensional maps”, Osaka J. Math., 20 (1983), 599–629 | MR | Zbl
[11] Savchenko S. V., “Ravnovesnye sostoyaniya s nepolnymi nositelyami i periodicheskie traektorii”, Matem. zametki (to appear)
[12] Bowen R., Lanford O., “Zeta functions of restrictions of the shift transformation”, Proc. Symp. Pure Math., 14 (1970), 43–50 | MR
[13] Gantmakher F. R., Teoriya matrits, Nauka, M., 1967 | MR
[14] Rudolph D., “A mixing Markov chain with exponentially decaying return time is finitarily Bernoulli”, Ergodic Theory and Dynamical Systems, 2 (1982), 85–97 | DOI | MR | Zbl
[15] Kornfeld I. P., Sinai Ya. G., Fomin S. V., Ergodicheskaya teoriya, Nauka, M., 1980 | MR | Zbl
[16] Keller G., “Circular codes, loop counting, and zeta-functions”, J. of Combinatorial Theory (Series A), 56:1 (1991), 75–83 | DOI | MR | Zbl
[17] Savchenko S. V., “Dzeta-funktsiya i gibbsovskie mery”, UMN, 48:1 (1993), 181–182 | MR | Zbl
[18] Hardy G. H., Divergent series, Oxford, 1949 | MR
[19] Galeeva R. F., Chernov N. I., “Usloviya strogo eksponentsialnogo rosta chisla tsiklov v schetnykh orientirovannykh grafakh”, UMN, 46:4 (1991), 143–144 | MR
[20] Ruelle D., “Generalised zeta functions for Axiom A basic sets”, Bull. Amer. Math. Soc., 82 (1976), 153–156 | DOI | MR | Zbl
[21] Parry W., “An analogue of the prime number theorem for closed orbits of shifts of finite type and their suspensions”, Israel. J. Math., 45 (1983), 41–52 | DOI | MR | Zbl
[22] Parry W., Policott M., Zeta functions and the periodic orbit structure of hyperbolic dynamics, Asterisque, 187–188, 1990 | MR | Zbl
[23] Abramov L. M., “Ob entropii potoka”, DAN SSSR, 128:5 (1959), 873–876 | MR
[24] Prakhar K., Raspredelenie prostykh chisel, Mir, M., 1967 | MR