On the recognition theorem for Lie algebras of characteristic three
Sbornik. Mathematics, Tome 186 (1995) no. 10, pp. 1461-1475

Voir la notice de l'article provenant de la source Math-Net.Ru

The finite-dimensional simple Lie algebras over an algebraically closed field of characteristic $p=3$ that admit a grading $(L_i;i\geqslant-1)$ of depth 1 are classified in this paper. It is assumed that $L_0$ is a reductive Lie algebra acting irreducibly on $L_{-1}$. Most of the arguments work for any characteristic $p\ne 2$. The case of a non-restricted $L_0$-module $L_{-1}$ was considered previously.
@article{SM_1995_186_10_a4,
     author = {A. I. Kostrikin and V. V. Ostrik},
     title = {On the recognition theorem for {Lie} algebras of characteristic three},
     journal = {Sbornik. Mathematics},
     pages = {1461--1475},
     publisher = {mathdoc},
     volume = {186},
     number = {10},
     year = {1995},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_1995_186_10_a4/}
}
TY  - JOUR
AU  - A. I. Kostrikin
AU  - V. V. Ostrik
TI  - On the recognition theorem for Lie algebras of characteristic three
JO  - Sbornik. Mathematics
PY  - 1995
SP  - 1461
EP  - 1475
VL  - 186
IS  - 10
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SM_1995_186_10_a4/
LA  - en
ID  - SM_1995_186_10_a4
ER  - 
%0 Journal Article
%A A. I. Kostrikin
%A V. V. Ostrik
%T On the recognition theorem for Lie algebras of characteristic three
%J Sbornik. Mathematics
%D 1995
%P 1461-1475
%V 186
%N 10
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SM_1995_186_10_a4/
%G en
%F SM_1995_186_10_a4
A. I. Kostrikin; V. V. Ostrik. On the recognition theorem for Lie algebras of characteristic three. Sbornik. Mathematics, Tome 186 (1995) no. 10, pp. 1461-1475. http://geodesic.mathdoc.fr/item/SM_1995_186_10_a4/