Asymptotics and stability of non-linear parametric oscillations of a singularly perturbed telegraph equation
Sbornik. Mathematics, Tome 186 (1995) no. 10, pp. 1445-1459 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

The solution of the problem indicated in the title is based on the method of quasi-normal forms developed previously by the author for the construction of stationary regimes of parabolic systems with small diffusion. As in the parabolic case, it relies on the theory of exponential dichotomy of solutions and on an algorithm in the study of stability of linear differential equations whose coefficients are nearly independent of the time.
@article{SM_1995_186_10_a3,
     author = {Yu. S. Kolesov},
     title = {Asymptotics and stability of non-linear parametric oscillations of a~singularly perturbed telegraph equation},
     journal = {Sbornik. Mathematics},
     pages = {1445--1459},
     year = {1995},
     volume = {186},
     number = {10},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_1995_186_10_a3/}
}
TY  - JOUR
AU  - Yu. S. Kolesov
TI  - Asymptotics and stability of non-linear parametric oscillations of a singularly perturbed telegraph equation
JO  - Sbornik. Mathematics
PY  - 1995
SP  - 1445
EP  - 1459
VL  - 186
IS  - 10
UR  - http://geodesic.mathdoc.fr/item/SM_1995_186_10_a3/
LA  - en
ID  - SM_1995_186_10_a3
ER  - 
%0 Journal Article
%A Yu. S. Kolesov
%T Asymptotics and stability of non-linear parametric oscillations of a singularly perturbed telegraph equation
%J Sbornik. Mathematics
%D 1995
%P 1445-1459
%V 186
%N 10
%U http://geodesic.mathdoc.fr/item/SM_1995_186_10_a3/
%G en
%F SM_1995_186_10_a3
Yu. S. Kolesov. Asymptotics and stability of non-linear parametric oscillations of a singularly perturbed telegraph equation. Sbornik. Mathematics, Tome 186 (1995) no. 10, pp. 1445-1459. http://geodesic.mathdoc.fr/item/SM_1995_186_10_a3/

[1] Yakubovich V. A., Starzhinskii V. M., Lineinye differentsialnye uravneniya s periodicheskimi koeffitsientami i ikh prilozheniya, Nauka, M., 1972 | MR

[2] Fomin V. N., Matematicheskaya teoriya parametricheskogo rezonansa v lineinykh raspredelennykh sistemakh, Izd-vo LGU, L., 1972 | MR

[3] Bogolyubov N. N., Mitropolskii Yu. A., Asimptoticheskie metody v teorii nelineinykh kolebanii, Nauka, M., 1974 | MR

[4] Mitropolskii Yu. A., Moseenkov B. I., Asimptoticheskie resheniya uravnenii v chastnykh proizvodnykh, Vischa shkola, Kiev, 1976

[5] Kolesov Yu. S., “Nelineinyi parametricheskii rezonans v singulyarno vozmuschennom telegrafnom uravnenii”, Differents. uravn., 27:10 (1991), 1828–1829 | MR | Zbl

[6] Kolesov A. Yu., “O printsipe oblasti v zadache o kolebaniyakh chislennosti mlekopitayuschikh”, Nelineinye kolebaniya v zadachakh ekologii, Izd-vo Yarosl. un-ta, Yaroslavl, 1985, 11–22 | MR

[7] Naimark M. A., Lineinye differentsialnye operatory, Nauka, M., 1969 | MR

[8] Kolesov Yu. S., “Ob ustoichivosti reshenii lineinykh differentsialnykh uravnenii parabolicheskogo tipa s pochti periodicheskimi koeffitsientami”, Tr. MMO, 36, URSS, M., 1978, 3–27 | MR | Zbl

[9] Daletskii Yu. L., Krein M. G., Ustoichivost reshenii differentsialnykh uravnenii v banakhovom prostranstve, Nauka, M., 1970 | MR

[10] Kolesov Yu. S., “Bifurkatsiya invariantnykh torov parabolicheskikh sistem s maloi diffuziei”, Matem. sb., 184:3 (1993), 121–136 | Zbl

[11] Kolesov A. Yu., Kolesov Yu. S., “Bifurkatsiya avtokolebanii singulyarno vozmuschennogo volnovogo uravneniya”, DAN SSSR, 315:2 (1990), 281–283 | MR | Zbl