Asymptotics and stability of non-linear parametric oscillations of a~singularly perturbed telegraph equation
    
    
  
  
  
      
      
      
        
Sbornik. Mathematics, Tome 186 (1995) no. 10, pp. 1445-1459
    
  
  
  
  
  
    
      
      
        
      
      
      
    Voir la notice de l'article provenant de la source Math-Net.Ru
            
              			The solution of the problem indicated in the title is based on the method of quasi-normal forms developed previously by the author for the construction of stationary regimes of parabolic systems with small diffusion. As in the parabolic case, it relies on the theory of exponential dichotomy of solutions and on an algorithm in the study of stability of linear differential equations whose coefficients are nearly independent of the time.
			
            
            
            
          
        
      @article{SM_1995_186_10_a3,
     author = {Yu. S. Kolesov},
     title = {Asymptotics and stability of non-linear parametric oscillations of a~singularly perturbed telegraph equation},
     journal = {Sbornik. Mathematics},
     pages = {1445--1459},
     publisher = {mathdoc},
     volume = {186},
     number = {10},
     year = {1995},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_1995_186_10_a3/}
}
                      
                      
                    TY - JOUR AU - Yu. S. Kolesov TI - Asymptotics and stability of non-linear parametric oscillations of a~singularly perturbed telegraph equation JO - Sbornik. Mathematics PY - 1995 SP - 1445 EP - 1459 VL - 186 IS - 10 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/SM_1995_186_10_a3/ LA - en ID - SM_1995_186_10_a3 ER -
Yu. S. Kolesov. Asymptotics and stability of non-linear parametric oscillations of a~singularly perturbed telegraph equation. Sbornik. Mathematics, Tome 186 (1995) no. 10, pp. 1445-1459. http://geodesic.mathdoc.fr/item/SM_1995_186_10_a3/
