Classification of finite 3-nets of types I.3, I.4, I.5
Sbornik. Mathematics, Tome 186 (1995) no. 10, pp. 1429-1443 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

Using the description of 2-transitive groups, in this paper finite 3-nets of types I.3, I.4, and I.5 are studied. According to the Barlotti-Strambach classification (see [4]) an arbitrary 3-net belongs to one of the seven Lenz classes I.1-I.5, II.1-II.2. In this work the question of the existence of nets of types I.3, I.4, I.5 remained open. The non-existence of a finite net of type I.5 is proved and the finite nets of type I.3 and I.4 are described up to isomorphism.
@article{SM_1995_186_10_a2,
     author = {A. P. Il'inykh},
     title = {Classification of finite 3-nets of types {I.3,} {I.4,} {I.5}},
     journal = {Sbornik. Mathematics},
     pages = {1429--1443},
     year = {1995},
     volume = {186},
     number = {10},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_1995_186_10_a2/}
}
TY  - JOUR
AU  - A. P. Il'inykh
TI  - Classification of finite 3-nets of types I.3, I.4, I.5
JO  - Sbornik. Mathematics
PY  - 1995
SP  - 1429
EP  - 1443
VL  - 186
IS  - 10
UR  - http://geodesic.mathdoc.fr/item/SM_1995_186_10_a2/
LA  - en
ID  - SM_1995_186_10_a2
ER  - 
%0 Journal Article
%A A. P. Il'inykh
%T Classification of finite 3-nets of types I.3, I.4, I.5
%J Sbornik. Mathematics
%D 1995
%P 1429-1443
%V 186
%N 10
%U http://geodesic.mathdoc.fr/item/SM_1995_186_10_a2/
%G en
%F SM_1995_186_10_a2
A. P. Il'inykh. Classification of finite 3-nets of types I.3, I.4, I.5. Sbornik. Mathematics, Tome 186 (1995) no. 10, pp. 1429-1443. http://geodesic.mathdoc.fr/item/SM_1995_186_10_a2/

[1] Lenz H., “Kleiner dezarguesscher Satz und Dualität in projektiven Ebenen”, Jahres-ber. Deutsche Math. Ver., 57 (1954), 20–31 | MR | Zbl

[2] Barlotti A., “Le possibili configurazioni del sistema delle coppie puntoretta $(A,a)$ per cui un piano graffico risulta $(A,a)$ transitivo”, Boll. Un. Mat. Ital., 12 (1957), 212–226 | MR | Zbl

[3] Dembowsky P., Finite geometries, Springer-Verlag, Berlin etc., 1968 | MR

[4] Barlotti A., Strambach K., “The geometry of binary systems”, Advances in Math., 49 (1983), 1–105 | DOI | MR | Zbl

[5] Strambach K., “Geometry and loops”, Lect. Notes Math., 893, 1981, 111–147 | MR | Zbl

[6] Ilinykh A. P., “Klassifikatsiya konechnykh $3$-setei”, Mezhdunarodnaya konferentsiya po algebre, posvyaschennaya pamyati A. I. Shirshova, Tezisy dokladov po logike i universalnym algebram, prikladnoi algebre (Barnaul, 1991), Novosibirsk, 1991, 51

[7] Belousov V. D., Algebraicheskie seti i kvazigruppy, Shtiinitsa, Kishinev, 1971

[8] Picket G., Projektive Ebenen, Springer-Verlag, Berlin etc., 1955 | MR

[9] Huppert B., Endliche Gruppen, V. I, Springer-Verlag, Berlin etc., 1967 | MR | Zbl

[10] Huppert B., Blackburn N., Finite groups, V. III, Springer-Verlag, Berlin etc., 1982

[11] Conway J., Atlas of finite groups, Univ. Press, Oxford, 1985 | MR | Zbl

[12] Kameron P. Dzh., “Konechnye gruppy podstanovok i konechnye prostye gruppy”, UMN, 38:3(231) (1983), 135–157 | MR

[13] Kantor W., “Homogeneous designs and geometric lattices”, J. Comb. Theory. Ser. A, 38 (1985), 66–74 | DOI | MR | Zbl

[14] Blaschke W., Projektive Geometrie, Birkhäuser, Basel–Stuttgart, 1954 | MR

[15] Il'inyh A. P., “Four sporadic groupoids with doubly transitive automorphism group”, Tretya mezhdunarodnaya konferentsiya po algebre pamyati M. I. Kargapolova, Tez. dokl. (Krasnoyarsk, 1993), Krasnoyarsk, 1993, 398

[16] Il'inyh A. P., “Finite groupoids of order $q(q\pm 1)/2$, $q=2^r$ admitting $SL(2,q)$ as the transitive automorphism group”, Algebra i analiz, Tezisy dokladov mezhdunarodnoi nauchnoi konferentsii, posvyaschennoi 100-letiyu so dnya rozhdeniya N. G. Chebotareva, Ch. 1, Kazan, 1994, 129

[17] Strambach K., “Multiplikationen mit grossen Automorphismengruppen”, Aequat. Math., 32 (1987), 311–326 | DOI | MR | Zbl

[18] Ilinykh A. P., “Klassifikatsiya konechnykh gruppoidov s $2$-tranzitivnoi gruppoi avtomorfizmov”, Matem. sb., 185:6 (1994), 51–79

[19] Cooperstein B. N., “Minimal degree for a permutation representation of a classical group”, Israel J. Math., 30:3 (1978), 213–235 | DOI | MR | Zbl

[20] Mazurov V. D., “Minimalnye podstanovochnye predstavleniya konechnykh prostykh klassicheskikh grupp. Spetsialnye lineinye, simplekticheskie i unitarnye gruppy”, Algebra i logika, 32:3 (1993), 267–287 | MR | Zbl

[21] Vasilev A. V., Mazurov V. D., “Minimalnye podstanovochnye predstavleniya konechnykh prostykh ortogonalnykh grupp”, Algebra i logika, 33:6 (1994), 603–627 | MR | Zbl

[22] Levchuk V. N., Nuzhin Ya. N., “O stroenii grupp Li”, Algebra i logika, 24:1 (1985), 26–41 | MR | Zbl

[23] Ilinykh A. P., “Konechnye neotela i $2$-tranzitivnye gruppy”, 19 Vsesoyuznaya algebraicheskaya konferentsiya, Tezisy soobschenii, Ch. 2 (Lvov, 1987), Lvov, 1987, 111

[24] Konvei Dzh., Sloen N., Upakovki sharov, reshetki i gruppy, T. I, Mir, M., 1990

[25] Korhmáros G., Saeli D., “Commutative loops of exponent two and involutorial $3$-nets with identity”, Geom. dedicata, 28:3 (1988), 259–276 | MR

[26] Ivanov D. N., “Ortogonalnye razlozheniya algebr Li tipa $A_{p^{n-1}-1}$ i $D_n$ s konechnym chislom klassov podobnykh invariantnykh podreshetok”, Vestn. MGU. Ser. 1. Matem., mekh., 1989, no. 2, 40–43 | Zbl