Homology reduction of cycles in the~complement of an~algebraic hypersurface
Sbornik. Mathematics, Tome 186 (1995) no. 10, pp. 1417-1427
Voir la notice de l'article provenant de la source Math-Net.Ru
An example of a 3-dimensional cycle in the complement of an algebraic hypersurface $V\subset\mathbb C^3$ that cannot be deformed into a tube over (is not homologous to the coboundary of) a 2-dimensional cycle in the set of regular points of $V$ is presented. Thus, the corresponding result of Poincare in $\mathbb C^2$ fails in $\mathbb C^n$ for $n>2$. It is proved that Poincare's result holds for hypersurfaces in $\mathbb C^n$ with a 'thin' set of singularities that are complete intersections.
@article{SM_1995_186_10_a1,
author = {N. A. Buruchenko and A. K. Tsikh},
title = {Homology reduction of cycles in the~complement of an~algebraic hypersurface},
journal = {Sbornik. Mathematics},
pages = {1417--1427},
publisher = {mathdoc},
volume = {186},
number = {10},
year = {1995},
language = {en},
url = {http://geodesic.mathdoc.fr/item/SM_1995_186_10_a1/}
}
TY - JOUR AU - N. A. Buruchenko AU - A. K. Tsikh TI - Homology reduction of cycles in the~complement of an~algebraic hypersurface JO - Sbornik. Mathematics PY - 1995 SP - 1417 EP - 1427 VL - 186 IS - 10 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/SM_1995_186_10_a1/ LA - en ID - SM_1995_186_10_a1 ER -
N. A. Buruchenko; A. K. Tsikh. Homology reduction of cycles in the~complement of an~algebraic hypersurface. Sbornik. Mathematics, Tome 186 (1995) no. 10, pp. 1417-1427. http://geodesic.mathdoc.fr/item/SM_1995_186_10_a1/