Dynamics of spatially chaotic solutions of parabolic equations
Sbornik. Mathematics, Tome 186 (1995) no. 10, pp. 1389-1415 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

We study parabolic systems with a potential non-linearity with one or many spatial variables. We describe a rather general and stable mechanism explaining the appearance and preservation of complicated stable spatial forms. The main idea consists in a description of the complexity of a solution in terms of its homotopy class. This class is a discrete-valued preserved quantity. The number of homotopy inequivalent solutions depends exponentially on the parameters of the equation. In our paper we discuss the connections between the dynamics of the solutions of parabolic systems with a complicated spatial structure and the properties of the Riemannian metric on the configuration space $\mathbb R^d$ generated by the Jacobian variational functional. The relationships between the lengths of the geodesics are reflected in the complexity of the spatial forms and in such dynamical properties as the attraction and repulsion of solitons.
@article{SM_1995_186_10_a0,
     author = {A. V. Babin},
     title = {Dynamics of spatially chaotic solutions of parabolic equations},
     journal = {Sbornik. Mathematics},
     pages = {1389--1415},
     year = {1995},
     volume = {186},
     number = {10},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_1995_186_10_a0/}
}
TY  - JOUR
AU  - A. V. Babin
TI  - Dynamics of spatially chaotic solutions of parabolic equations
JO  - Sbornik. Mathematics
PY  - 1995
SP  - 1389
EP  - 1415
VL  - 186
IS  - 10
UR  - http://geodesic.mathdoc.fr/item/SM_1995_186_10_a0/
LA  - en
ID  - SM_1995_186_10_a0
ER  - 
%0 Journal Article
%A A. V. Babin
%T Dynamics of spatially chaotic solutions of parabolic equations
%J Sbornik. Mathematics
%D 1995
%P 1389-1415
%V 186
%N 10
%U http://geodesic.mathdoc.fr/item/SM_1995_186_10_a0/
%G en
%F SM_1995_186_10_a0
A. V. Babin. Dynamics of spatially chaotic solutions of parabolic equations. Sbornik. Mathematics, Tome 186 (1995) no. 10, pp. 1389-1415. http://geodesic.mathdoc.fr/item/SM_1995_186_10_a0/

[1] Babin A. V., Vishik M. V., Attraktory evolyutsionnykh uravnenii, Nauka, M., 1989 | MR | Zbl

[2] Besov O. V., Ilin V. P., Nikolskii S. M., Integralnye predstavleniya funktsii i teoremy vlozheniya, Nauka, M., 1975 | MR | Zbl

[3] Fuks D. B., Fomenko A. T., Gutenmakher V. L., Gomotopicheskaya topologiya, M., 1969

[4] Ekland I., Temam R., Vypuklyi analiz i variatsionnye problemy, Mir, M., 1979 | MR

[5] Afraimovich V. S., Bunimovich L., Density of defects and spatial entropy in extended systems, Preprint CDSNS 94-178, 1994 | MR

[6] Afraimovich V., Babin A., Chow S.-N., Spatial chaotic structure of attractors of reaction-diffusion systems, Preprint CDSNS 94-185, 1994 | MR

[7] Afraimovich V. S., Chow S. N., Criteria of spatial chaos in lattice dynamical systems, Preprint CDSNS 93-142, 1993

[8] Babin A. V., “Homotopy stable spatially chaotic waves on an infinite interval”, Proceedings of Symposium on structure and dynamics of nonlinear waves in fluids, Hannover, 1994 | MR

[9] Babin A., Bunimovich L., “Dynamics of stable chaotic waves generated by hyperbolic PDE” (to appear) | MR

[10] Babin A. V., Vishik M. I., “Attractors of partial differential evolution equations in an unbounded domain”, Proc. Roy. Soc. Edinburgh, 116A, 1990, 221–243 | MR | Zbl

[11] Whitehead G. W., Elements of Homotopy Topology, Springer-Verlag, 1978 | MR | Zbl