On indicators of entire functions and extension of solutions of a homogeneous convolution equation
Sbornik. Mathematics, Tome 79 (1994) no. 2, pp. 401-423 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

A study is made of the problem of extending solutions of a homogeneous convolution equation generated by analytic functional on convex domains in a multidimensional complex space. Conditions ensuring the simultaneous extension of solutions are given in terms of complete regularity of the growth in limiting directions of accumulations of zeros of the Laplace transform of an analytic functional. These conditions generalize previously known results on this problem. Some properties of indicators of entire functions are also presented.
@article{SM_1994_79_2_a9,
     author = {A. S. Krivosheev},
     title = {On indicators of entire functions and extension of solutions of a~homogeneous convolution equation},
     journal = {Sbornik. Mathematics},
     pages = {401--423},
     year = {1994},
     volume = {79},
     number = {2},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_1994_79_2_a9/}
}
TY  - JOUR
AU  - A. S. Krivosheev
TI  - On indicators of entire functions and extension of solutions of a homogeneous convolution equation
JO  - Sbornik. Mathematics
PY  - 1994
SP  - 401
EP  - 423
VL  - 79
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/SM_1994_79_2_a9/
LA  - en
ID  - SM_1994_79_2_a9
ER  - 
%0 Journal Article
%A A. S. Krivosheev
%T On indicators of entire functions and extension of solutions of a homogeneous convolution equation
%J Sbornik. Mathematics
%D 1994
%P 401-423
%V 79
%N 2
%U http://geodesic.mathdoc.fr/item/SM_1994_79_2_a9/
%G en
%F SM_1994_79_2_a9
A. S. Krivosheev. On indicators of entire functions and extension of solutions of a homogeneous convolution equation. Sbornik. Mathematics, Tome 79 (1994) no. 2, pp. 401-423. http://geodesic.mathdoc.fr/item/SM_1994_79_2_a9/

[1] Napalkov V. V., Uravneniya svertki v mnogomernykh prostranstvakh, Nauka, M., 1982 | MR

[2] Yulmukhametov R. S., “Odnorodnye uravneniya svertki”, DAN SSSR, 316:2 (1991), 312–315 | MR | Zbl

[3] Lelon P., Gruman L., Tselye funktsii mnogikh kompleksnykh peremennykh, Mir, M., 1989 | MR | Zbl

[4] Leontev A. F., “Ryady polinomov Dirikhle i ikh obobscheniya”, Tr. MIAN, 39, Nauka, M., 1951, 3–214 | MR | Zbl

[5] Kahane J. P., “Sur quelqes problemes d'unicité et de prolongement, relatifs aux fonctions approchables par des sommes d'exponentielles”, Ann. Inst. Fourier, 5 (1953–1954), 39–130 | MR

[6] Leontev A. F., “O skhodimosti posledovatelnosti polinomov Dirikhle”, DAN SSSR, 108:1 (1956), 23–26 | MR | Zbl

[7] Baillette A., “Approximation de fonctions par des sommes d'exponentielles”, C. R. Acad. Sci. Paris, 249 (1959), 2470–2471 | MR | Zbl

[8] Krasichkov I. F., “Skhodimost polinomov Dirikhle”, Sib. Matem. zhurnal, 7 (1966), 1039–1058 | MR | Zbl

[9] Krasichkov-Ternovskii I. F., “Invariantnye podprostranstva analiticheskikh funktsii. Analiticheskoe prodolzhenie”, Izv. AN SSSR. Ser. matem., 37:4 (1973), 933–947

[10] Kiselman C. O., “Prolongement des solutions d$'$une equation aux dèrivèes partielles à coefficients constants”, Bull. Soc. Math. France, 97 (1969), 329–354 | MR

[11] Sebbar A., “Prolongements des solutions holomorphes de certains operateurs différentiel d$'$ordre infini à coefficients constants”, Lect. Notes in Math., 822, 1980, 199–220 | MR | Zbl

[12] Meril A., Struppa D. C., “Convolutors of holomorphic functions”, Lect. Notes in Math., 1276, 1987, 253–275 | MR | Zbl

[13] Dedonne Zh., Shvarts L., “Dvoistvennost v prostranstvakh $(F)$ i $(LF)$”, Sb. Matematika, 2:2 (1958), 77–107

[14] Grotendik A. O., “O prostranstvakh $({\mathcal F})$ i $(\mathcal{DF})$”, Sb. Matematika, 2:3 (1958), 81–127

[15] Wiegerinck J. J., “Growth properties of Paley–Wiener functions on ${\mathbb C}^n$”, Nederl. Acad. Wetensch. Proc., 87 (1984), 95–112 | MR

[16] Kheiman U., Kennedi P., Subgarmonicheskie funktsii, Mir, M., 1980

[17] Grishin A. F., “O regulyarnosti rosta subgarmonicheskikh funktsii”, Teoriya funktsii, funkts. analiz i ikh prilozh., 6, Kharkov, 1968, 3–29 | MR | Zbl

[18] Levin B. Ya., Raspredelenie kornei tselykh funktsii, Gostekhizdat, M., 1956

[19] Ronkin L. I., Vvedenie v teoriyu tselykh funktsii mnogikh peremennykh, Nauka, M., 1971 | MR | Zbl

[20] Sigurdsson R., “Growth properties of analytic and plurisubharmonic functions of finite order”, Math. Scand., 59 (1986), 234–304 | MR

[21] Azarin V. S., “Ob asimptoticheskom povedenii subgarmonicheskikh funktsii konechnogo poryadka”, Matem. sb., 108:2 (1979), 147–169 | MR

[22] Sigurdsson R., Convolution equations in domains of ${\mathbb C}^n$, Preprint RH-01-89. Sci. Inst. Univ. of Iceland, Sci. Inst. Univ. of Iceland, Reykjavik, 1989 | MR | Zbl

[23] Leikhtveis K., Vypuklye mnozhestva, Nauka, M., 1985 | MR

[24] Khërmander L., Vvedenie v teoriyu funktsii neskolkikh kompleksnykh peremennykh, Mir, M., 1968 | MR

[25] Krasichkov-Ternovskii I. F., “Odnorodnoe uravnenie tipa svertki na vypuklykh oblastyakh”, DAN SSSR, 197:1 (1971), 29–31 | MR

[26] Krasichkov-Ternovskii I. F., “Invariantnye podprostranstva analiticheskikh funktsii. I: Spektralnyi analiz na vypuklykh oblastyakh”, Matem. sb., 87(129):4 (1972), 459–489 | MR

[27] Krasichkov-Ternovskii I. F., “Invariantnye podprostranstva analiticheskikh funktsii. II: Spektralnyi sintez na vypuklykh oblastyakh”, Matem. sb., 88(130):1 (1972), 3–30

[28] Napalkov V. V., “O podprostranstvakh analiticheskikh funktsii, invariantnykh otnositelno sdviga”, Izv. AN SSSR. Ser. matem., 36:6 (1972), 1269–1281 | MR | Zbl

[29] Napalkov V. V., “Uravneniya tipa svertki v trubchatykh oblastyakh ${\mathbb C}^n$”, Izv. AN SSSR. Ser. matem., 38:2 (1974), 446–456 | MR | Zbl

[30] Napalkov V. V., “Ob odnoi teoreme edinstvennosti v teorii funktsii mnogikh kompleksnykh peremennykh i odnorodnykh uravneniyakh tipa svertki v trubchatykh oblastyakh ${\mathbb C}^n$”, Izv. AN SSSR. Ser. matem., 40:1 (1976), 115–132 | MR | Zbl