Strictly sharp irreducible characters of symmetric and alternating groups
    
    
  
  
  
      
      
      
        
Sbornik. Mathematics, Tome 79 (1994) no. 2, pp. 381-400
    
  
  
  
  
  
    
      
      
        
      
      
      
    Voir la notice de l'article provenant de la source Math-Net.Ru
            
              			A complex character $\chi$ of a finite group $G$ is called strictly sharp if $|G|=\prod_{l\in L}(n-l)$, where $n=\chi(1)$ is the degree of the character and 
$L=\{\chi(g)\mid g\in G,\ g\ne1\}$. In this paper all irreducible strictly sharp characters of the symmetric and alternating groups are found. In particular, it is proved that the symmetric groups $S_n$, $n\geslant7$, and the alternating groups $A_n$, $n\geslant9$, have exactly one irreducible strictly sharp character.
			
            
            
            
          
        
      @article{SM_1994_79_2_a8,
     author = {I. Yu. Maslyakov},
     title = {Strictly sharp irreducible characters of symmetric and alternating groups},
     journal = {Sbornik. Mathematics},
     pages = {381--400},
     publisher = {mathdoc},
     volume = {79},
     number = {2},
     year = {1994},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_1994_79_2_a8/}
}
                      
                      
                    I. Yu. Maslyakov. Strictly sharp irreducible characters of symmetric and alternating groups. Sbornik. Mathematics, Tome 79 (1994) no. 2, pp. 381-400. http://geodesic.mathdoc.fr/item/SM_1994_79_2_a8/
