Strictly sharp irreducible characters of symmetric and alternating groups
Sbornik. Mathematics, Tome 79 (1994) no. 2, pp. 381-400 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

A complex character $\chi$ of a finite group $G$ is called strictly sharp if $|G|=\prod_{l\in L}(n-l)$, where $n=\chi(1)$ is the degree of the character and $L=\{\chi(g)\mid g\in G,\ g\ne1\}$. In this paper all irreducible strictly sharp characters of the symmetric and alternating groups are found. In particular, it is proved that the symmetric groups $S_n$, $n\geslant7$, and the alternating groups $A_n$, $n\geslant9$, have exactly one irreducible strictly sharp character.
@article{SM_1994_79_2_a8,
     author = {I. Yu. Maslyakov},
     title = {Strictly sharp irreducible characters of symmetric and alternating groups},
     journal = {Sbornik. Mathematics},
     pages = {381--400},
     year = {1994},
     volume = {79},
     number = {2},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_1994_79_2_a8/}
}
TY  - JOUR
AU  - I. Yu. Maslyakov
TI  - Strictly sharp irreducible characters of symmetric and alternating groups
JO  - Sbornik. Mathematics
PY  - 1994
SP  - 381
EP  - 400
VL  - 79
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/SM_1994_79_2_a8/
LA  - en
ID  - SM_1994_79_2_a8
ER  - 
%0 Journal Article
%A I. Yu. Maslyakov
%T Strictly sharp irreducible characters of symmetric and alternating groups
%J Sbornik. Mathematics
%D 1994
%P 381-400
%V 79
%N 2
%U http://geodesic.mathdoc.fr/item/SM_1994_79_2_a8/
%G en
%F SM_1994_79_2_a8
I. Yu. Maslyakov. Strictly sharp irreducible characters of symmetric and alternating groups. Sbornik. Mathematics, Tome 79 (1994) no. 2, pp. 381-400. http://geodesic.mathdoc.fr/item/SM_1994_79_2_a8/

[1] Cameron P. J., Kiyota M., “Sharp Characters of Finite Groups”, J. Algebra, 115:1 (1988), 125–143 | DOI | MR | Zbl

[2] Dzheims G., Teoriya predstavlenii simmetricheskikh grupp, Mir, M., 1982 | MR

[3] Murnagan F., Teoriya predstavlenii grupp, IL, M., 1950

[4] Kerber A., Representations of Permutation Groups, I, Lect. Notes in Math., 240, 1971 | MR | Zbl

[5] Gorenstein D., Finite Groups, Harper and Row, New York, 1968 | MR | Zbl

[6] Rorbach H., Weis J., “Zum finiten Fall das Bertrandschen Postulats”, J. reine und angew. Math., 1964, 214–215

[7] Conway J. H., Curtis R. T., Norton S. P., Parker R. A., Wilson R. A., Atlas of finite groups, Clarendon Press, Oxford, 1985 | MR | Zbl

[8] Kondo K., “Table of characters of symmetric group of degree 14”, Proc. Phys. Math. Soc. Japan, Ser. 3, 22 (1940), 585–593 | MR | Zbl

[9] Bivins R. L., Metropolis O. N., Stein P. R., Wells M. B., “Characters of the symmetric groups of degree 15 and 16”, Math. Tables Aids Comput., 8 (1954), 212–216 | DOI | MR | Zbl