Evolution parabolic inequalities with multivalued operators
    
    
  
  
  
      
      
      
        
Sbornik. Mathematics, Tome 79 (1994) no. 2, pp. 365-380
    
  
  
  
  
  
    
      
      
        
      
      
      
    Voir la notice de l'article provenant de la source Math-Net.Ru
            
              			Conditions are found under which the set of solutions of an evolution parabolic inequality is nonempty, compact, and connected. Included in the study is the Cauchy problem $f\in y'+Ay$, $y(\alpha)=h$ with a multivalued and monotone operator $A\colon Z^*\to Z$, where $Z$ is a nonreflexive $B$-space. Questions connected with well-posedness of the Cauchy problem and convergence of Faedo–Galërkin approximations are investigated.
			
            
            
            
          
        
      @article{SM_1994_79_2_a7,
     author = {V. S. Klimov},
     title = {Evolution parabolic inequalities with multivalued operators},
     journal = {Sbornik. Mathematics},
     pages = {365--380},
     publisher = {mathdoc},
     volume = {79},
     number = {2},
     year = {1994},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_1994_79_2_a7/}
}
                      
                      
                    V. S. Klimov. Evolution parabolic inequalities with multivalued operators. Sbornik. Mathematics, Tome 79 (1994) no. 2, pp. 365-380. http://geodesic.mathdoc.fr/item/SM_1994_79_2_a7/
