Evolution parabolic inequalities with multivalued operators
Sbornik. Mathematics, Tome 79 (1994) no. 2, pp. 365-380

Voir la notice de l'article provenant de la source Math-Net.Ru

Conditions are found under which the set of solutions of an evolution parabolic inequality is nonempty, compact, and connected. Included in the study is the Cauchy problem $f\in y'+Ay$, $y(\alpha)=h$ with a multivalued and monotone operator $A\colon Z^*\to Z$, where $Z$ is a nonreflexive $B$-space. Questions connected with well-posedness of the Cauchy problem and convergence of Faedo–Galërkin approximations are investigated.
@article{SM_1994_79_2_a7,
     author = {V. S. Klimov},
     title = {Evolution parabolic inequalities with multivalued operators},
     journal = {Sbornik. Mathematics},
     pages = {365--380},
     publisher = {mathdoc},
     volume = {79},
     number = {2},
     year = {1994},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_1994_79_2_a7/}
}
TY  - JOUR
AU  - V. S. Klimov
TI  - Evolution parabolic inequalities with multivalued operators
JO  - Sbornik. Mathematics
PY  - 1994
SP  - 365
EP  - 380
VL  - 79
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SM_1994_79_2_a7/
LA  - en
ID  - SM_1994_79_2_a7
ER  - 
%0 Journal Article
%A V. S. Klimov
%T Evolution parabolic inequalities with multivalued operators
%J Sbornik. Mathematics
%D 1994
%P 365-380
%V 79
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SM_1994_79_2_a7/
%G en
%F SM_1994_79_2_a7
V. S. Klimov. Evolution parabolic inequalities with multivalued operators. Sbornik. Mathematics, Tome 79 (1994) no. 2, pp. 365-380. http://geodesic.mathdoc.fr/item/SM_1994_79_2_a7/