and $2\gamma>2N-(N-2)p$. Sharp best possible a priori estimates are established for the solution of this problem and for its first and second derivatives in the corresponding function spaces.
@article{SM_1994_79_2_a5,
author = {S. I. Pokhozhaev},
title = {Sharp a~priori estimates for a~quasilinear degenerate elliptic problem},
journal = {Sbornik. Mathematics},
pages = {335--346},
year = {1994},
volume = {79},
number = {2},
language = {en},
url = {http://geodesic.mathdoc.fr/item/SM_1994_79_2_a5/}
}
S. I. Pokhozhaev. Sharp a priori estimates for a quasilinear degenerate elliptic problem. Sbornik. Mathematics, Tome 79 (1994) no. 2, pp. 335-346. http://geodesic.mathdoc.fr/item/SM_1994_79_2_a5/
[1] Ladyzhenskaya O. A., Uraltseva N. N., Lineinye i kvazilineinye uravneniya ellipticheskogo tipa, Nauka, M., 1973 | MR
[2] Gilbarg D., Tridinger N., Ellipticheskie differentsialnye uravneniya s chastnymi proizvodnymi vtorogo poryadka, Nauka, M., 1989 | MR | Zbl
[3] Pokhozhaev S. I., “O sobstvennykh funktsiyakh uravneniya $\Delta u+\lambda f(u)=0 $”, DAN SSSR, 165:1 (1965), 36–39 | MR | Zbl
[4] Agmon S., Duglis A., Nirenberg L., Otsenki reshenii ellipticheskikh uravnenii vblizi granitsy, IL, M., 1962
[5] Berestycki H., Lions P.-L., “Nonlinear scalar field equations. I: Existence of a ground state”, Arch. Rat. Mech. Anal., 82:4 (1983), 313–345 | MR | Zbl