Sharp a~priori estimates for a~quasilinear degenerate elliptic problem
    
    
  
  
  
      
      
      
        
Sbornik. Mathematics, Tome 79 (1994) no. 2, pp. 335-346
    
  
  
  
  
  
    
      
      
        
      
      
      
    Voir la notice de l'article provenant de la source Math-Net.Ru
            
              			A study is made of the equation
$$
\Delta u+\frac1{|x|^\gamma }|u|^{p-2}u=h(x)
$$
in a bounded domain $\Omega\subset\mathbb{R}^N$ $(N\ge3)$ with homogeneous Dirichlet boundary conditions. 
Here $2$ and $2\gamma>2N-(N-2)p$. Sharp best possible a priori estimates are established for the solution of this problem and for its first and second derivatives in the corresponding function spaces.
			
            
            
            
          
        
      @article{SM_1994_79_2_a5,
     author = {S. I. Pokhozhaev},
     title = {Sharp a~priori estimates for a~quasilinear degenerate elliptic problem},
     journal = {Sbornik. Mathematics},
     pages = {335--346},
     publisher = {mathdoc},
     volume = {79},
     number = {2},
     year = {1994},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_1994_79_2_a5/}
}
                      
                      
                    S. I. Pokhozhaev. Sharp a~priori estimates for a~quasilinear degenerate elliptic problem. Sbornik. Mathematics, Tome 79 (1994) no. 2, pp. 335-346. http://geodesic.mathdoc.fr/item/SM_1994_79_2_a5/
