On global existence of an implicit function
Sbornik. Mathematics, Tome 79 (1994) no. 2, pp. 287-313
Cet article a éte moissonné depuis la source Math-Net.Ru
The problem of global existence of an implicit function is studied, i.e., the properties of Banach spaces $X$, $Y$, $Z$ and functions $$ F\colon X\times Y\to Z, $$ for which a smooth solution $y=\varphi(x)$ of the equation $F(x,y) = 0$ is possible with given initial condition $y_0=\varphi(x_0)$, where $ F(x_0,y_0)=0$. It is shown that excessive smoothness of $F$ with respect to $y$ is necessary for the existence of a smooth global solution (in comparison with a local solution).
@article{SM_1994_79_2_a3,
author = {I. G. Tsar'kov},
title = {On global existence of an~implicit function},
journal = {Sbornik. Mathematics},
pages = {287--313},
year = {1994},
volume = {79},
number = {2},
language = {en},
url = {http://geodesic.mathdoc.fr/item/SM_1994_79_2_a3/}
}
I. G. Tsar'kov. On global existence of an implicit function. Sbornik. Mathematics, Tome 79 (1994) no. 2, pp. 287-313. http://geodesic.mathdoc.fr/item/SM_1994_79_2_a3/
[1] Kartan A., Differentsialnoe ischislenie. Differentsialnye formy, Mir, M., 1971 | MR | Zbl
[2] Daletskii Yu. L., Krein M. G., Ustoichivost reshenii differentsialnykh uravnenii v banakhovom prostranstve, Nauka, M., 1976 | MR
[3] Balaganskii V. S., Vlasov L. P., Approksimativno-geometricheskie svoistva mnozhestv v banakhovykh prostranstvakh, Preprint IMM AN SSSR UO, Sverdlovsk, 1990
[4] Konyagin S. V., Tsarkov I. G., “O sglazhivanii otobrazhenii v normirovannykh prostranstvakh”, UMN, 43:4 (1988), 205–206 | MR