On global existence of an~implicit function
Sbornik. Mathematics, Tome 79 (1994) no. 2, pp. 287-313

Voir la notice de l'article provenant de la source Math-Net.Ru

The problem of global existence of an implicit function is studied, i.e., the properties of Banach spaces $X$$Y$$Z$ and functions $$ F\colon X\times Y\to Z, $$ for which a smooth solution $y=\varphi(x)$ of the equation $F(x,y) = 0$ is possible with given initial condition $y_0=\varphi(x_0)$, where $ F(x_0,y_0)=0$. It is shown that excessive smoothness of $F$ with respect to $y$ is necessary for the existence of a smooth global solution (in comparison with a local solution).
@article{SM_1994_79_2_a3,
     author = {I. G. Tsar'kov},
     title = {On global existence of an~implicit function},
     journal = {Sbornik. Mathematics},
     pages = {287--313},
     publisher = {mathdoc},
     volume = {79},
     number = {2},
     year = {1994},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_1994_79_2_a3/}
}
TY  - JOUR
AU  - I. G. Tsar'kov
TI  - On global existence of an~implicit function
JO  - Sbornik. Mathematics
PY  - 1994
SP  - 287
EP  - 313
VL  - 79
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SM_1994_79_2_a3/
LA  - en
ID  - SM_1994_79_2_a3
ER  - 
%0 Journal Article
%A I. G. Tsar'kov
%T On global existence of an~implicit function
%J Sbornik. Mathematics
%D 1994
%P 287-313
%V 79
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SM_1994_79_2_a3/
%G en
%F SM_1994_79_2_a3
I. G. Tsar'kov. On global existence of an~implicit function. Sbornik. Mathematics, Tome 79 (1994) no. 2, pp. 287-313. http://geodesic.mathdoc.fr/item/SM_1994_79_2_a3/