The existence of infinite polygons in a~two-dimensional metric of variable negative curvature
    
    
  
  
  
      
      
      
        
Sbornik. Mathematics, Tome 79 (1994) no. 2, pp. 459-469
    
  
  
  
  
  
    
      
      
        
      
      
      
    Voir la notice de l'article provenant de la source Math-Net.Ru
            
              			We prove the existence of certain classes of convex noncompact domains on two-dimensional manifolds of variable negative Gaussian curvature. These domains are defined as the intersection of finitely or countably many half-planes (a half-plane is one of the two parts of the whole manifold bounded by a geodesic) whose boundaries have no common points. The boundary of such convex noncompact domains consists of complete geodesics. In this paper, these domains are called infinite polygons (IP for short). There exist IPs in the Lobachevsky plane.
			
            
            
            
          
        
      @article{SM_1994_79_2_a12,
     author = {R. Ts. Musaelyan},
     title = {The existence of infinite polygons in a~two-dimensional metric of variable negative curvature},
     journal = {Sbornik. Mathematics},
     pages = {459--469},
     publisher = {mathdoc},
     volume = {79},
     number = {2},
     year = {1994},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_1994_79_2_a12/}
}
                      
                      
                    TY - JOUR AU - R. Ts. Musaelyan TI - The existence of infinite polygons in a~two-dimensional metric of variable negative curvature JO - Sbornik. Mathematics PY - 1994 SP - 459 EP - 469 VL - 79 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/SM_1994_79_2_a12/ LA - en ID - SM_1994_79_2_a12 ER -
R. Ts. Musaelyan. The existence of infinite polygons in a~two-dimensional metric of variable negative curvature. Sbornik. Mathematics, Tome 79 (1994) no. 2, pp. 459-469. http://geodesic.mathdoc.fr/item/SM_1994_79_2_a12/
