Selfdual geometry of generalized K\"ahlerian manifolds
    
    
  
  
  
      
      
      
        
Sbornik. Mathematics, Tome 79 (1994) no. 2, pp. 447-457
    
  
  
  
  
  
    
      
      
        
      
      
      
    Voir la notice de l'article provenant de la source Math-Net.Ru
            
              			A complete classification has been obtained of selfdual generalized Kählerian manifolds (of both classical type and nonexceptional Kählerian manifolds of hyperbolic type) of constant scalar curvature. It has also been shown that a generalized Kählerian manifold is anti-selfdual if and only if its scalar curvature vanishes identically. These results essentially generalize well-known results of Hitchin, Bourguignon, Derdziński, Chen, and Itoh.
			
            
            
            
          
        
      @article{SM_1994_79_2_a11,
     author = {O. E. Arsen'eva},
     title = {Selfdual geometry of generalized {K\"ahlerian} manifolds},
     journal = {Sbornik. Mathematics},
     pages = {447--457},
     publisher = {mathdoc},
     volume = {79},
     number = {2},
     year = {1994},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_1994_79_2_a11/}
}
                      
                      
                    O. E. Arsen'eva. Selfdual geometry of generalized K\"ahlerian manifolds. Sbornik. Mathematics, Tome 79 (1994) no. 2, pp. 447-457. http://geodesic.mathdoc.fr/item/SM_1994_79_2_a11/
