Selfdual geometry of generalized K\"ahlerian manifolds
Sbornik. Mathematics, Tome 79 (1994) no. 2, pp. 447-457

Voir la notice de l'article provenant de la source Math-Net.Ru

A complete classification has been obtained of selfdual generalized Kählerian manifolds (of both classical type and nonexceptional Kählerian manifolds of hyperbolic type) of constant scalar curvature. It has also been shown that a generalized Kählerian manifold is anti-selfdual if and only if its scalar curvature vanishes identically. These results essentially generalize well-known results of Hitchin, Bourguignon, Derdziński, Chen, and Itoh.
@article{SM_1994_79_2_a11,
     author = {O. E. Arsen'eva},
     title = {Selfdual geometry of generalized {K\"ahlerian} manifolds},
     journal = {Sbornik. Mathematics},
     pages = {447--457},
     publisher = {mathdoc},
     volume = {79},
     number = {2},
     year = {1994},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_1994_79_2_a11/}
}
TY  - JOUR
AU  - O. E. Arsen'eva
TI  - Selfdual geometry of generalized K\"ahlerian manifolds
JO  - Sbornik. Mathematics
PY  - 1994
SP  - 447
EP  - 457
VL  - 79
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SM_1994_79_2_a11/
LA  - en
ID  - SM_1994_79_2_a11
ER  - 
%0 Journal Article
%A O. E. Arsen'eva
%T Selfdual geometry of generalized K\"ahlerian manifolds
%J Sbornik. Mathematics
%D 1994
%P 447-457
%V 79
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SM_1994_79_2_a11/
%G en
%F SM_1994_79_2_a11
O. E. Arsen'eva. Selfdual geometry of generalized K\"ahlerian manifolds. Sbornik. Mathematics, Tome 79 (1994) no. 2, pp. 447-457. http://geodesic.mathdoc.fr/item/SM_1994_79_2_a11/