Closed ideals in algebras of functions analytic in the~disk and smooth up to its boundary
    
    
  
  
  
      
      
      
        
Sbornik. Mathematics, Tome 79 (1994) no. 2, pp. 425-445
    
  
  
  
  
  
    
      
      
        
      
      
      
    Voir la notice de l'article provenant de la source Math-Net.Ru
            
              			A complete description is obtained for closed ideals in algebras of holomorphic functions $f$ on the unit disk such that
$$
\bigl|f^{(n)}(\zeta_1)-f^{(n)}(\zeta_2)\bigr|=o\bigl(\omega(|\zeta_1-\zeta_2|)\bigr) \qquad 
(|\zeta_1-\zeta_2|\to 0).
$$
Here $n$ is a nonnegative integer, and $\omega$ an arbitrary nonnegative nondecreasing subadditive function on $(0,+\infty)$.
			
            
            
            
          
        
      @article{SM_1994_79_2_a10,
     author = {F. A. Shamoyan},
     title = {Closed ideals in algebras of functions analytic in the~disk and smooth up to its boundary},
     journal = {Sbornik. Mathematics},
     pages = {425--445},
     publisher = {mathdoc},
     volume = {79},
     number = {2},
     year = {1994},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_1994_79_2_a10/}
}
                      
                      
                    F. A. Shamoyan. Closed ideals in algebras of functions analytic in the~disk and smooth up to its boundary. Sbornik. Mathematics, Tome 79 (1994) no. 2, pp. 425-445. http://geodesic.mathdoc.fr/item/SM_1994_79_2_a10/
