Closed ideals in algebras of functions analytic in the~disk and smooth up to its boundary
Sbornik. Mathematics, Tome 79 (1994) no. 2, pp. 425-445

Voir la notice de l'article provenant de la source Math-Net.Ru

A complete description is obtained for closed ideals in algebras of holomorphic functions $f$ on the unit disk such that $$ \bigl|f^{(n)}(\zeta_1)-f^{(n)}(\zeta_2)\bigr|=o\bigl(\omega(|\zeta_1-\zeta_2|)\bigr) \qquad (|\zeta_1-\zeta_2|\to 0). $$ Here $n$ is a nonnegative integer, and $\omega$ an arbitrary nonnegative nondecreasing subadditive function on $(0,+\infty)$.
@article{SM_1994_79_2_a10,
     author = {F. A. Shamoyan},
     title = {Closed ideals in algebras of functions analytic in the~disk and smooth up to its boundary},
     journal = {Sbornik. Mathematics},
     pages = {425--445},
     publisher = {mathdoc},
     volume = {79},
     number = {2},
     year = {1994},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_1994_79_2_a10/}
}
TY  - JOUR
AU  - F. A. Shamoyan
TI  - Closed ideals in algebras of functions analytic in the~disk and smooth up to its boundary
JO  - Sbornik. Mathematics
PY  - 1994
SP  - 425
EP  - 445
VL  - 79
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SM_1994_79_2_a10/
LA  - en
ID  - SM_1994_79_2_a10
ER  - 
%0 Journal Article
%A F. A. Shamoyan
%T Closed ideals in algebras of functions analytic in the~disk and smooth up to its boundary
%J Sbornik. Mathematics
%D 1994
%P 425-445
%V 79
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SM_1994_79_2_a10/
%G en
%F SM_1994_79_2_a10
F. A. Shamoyan. Closed ideals in algebras of functions analytic in the~disk and smooth up to its boundary. Sbornik. Mathematics, Tome 79 (1994) no. 2, pp. 425-445. http://geodesic.mathdoc.fr/item/SM_1994_79_2_a10/