Kolmogorov's $(n,\delta)$-widths of spaces of smooth functions
Sbornik. Mathematics, Tome 79 (1994) no. 2, pp. 265-279 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

Kolmogorov's $(n,\delta)$-widths of the Sobolev spaces $W_2^r$, equipped with a Gaussian probability measure $\mu$, are studied in the metric of $L_q$: $$ d_{n,\delta}(W_2^r,\mu,L_q)=\inf_{G\subset W_2^r}d_n(W_2^r\setminus G,L_q), $$ where $d_n(K, L_q)$ is Kolmogorov's $n$-width of the set $K$ in the space $L_q$, and the infimum is taken over all possible subsets $G\subset W_2^r$ with measure $\mu(G)\le\delta$, $0\le\delta\le1$. The asymptotic equality $$ d_{n,\delta}(W_2^r,\mu,L_q)\asymp n^{-r-\varepsilon}\sqrt{1+\frac1n\ln\frac1\delta} $$ with respect to $n$ and $\delta$ is obtained, where $1\le q\le\infty$ and $\varepsilon>0$ is an arbitrary number depending only on the measure $\mu$.
@article{SM_1994_79_2_a1,
     author = {V. E. Maiorov},
     title = {Kolmogorov's $(n,\delta)$-widths of spaces of smooth functions},
     journal = {Sbornik. Mathematics},
     pages = {265--279},
     year = {1994},
     volume = {79},
     number = {2},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_1994_79_2_a1/}
}
TY  - JOUR
AU  - V. E. Maiorov
TI  - Kolmogorov's $(n,\delta)$-widths of spaces of smooth functions
JO  - Sbornik. Mathematics
PY  - 1994
SP  - 265
EP  - 279
VL  - 79
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/SM_1994_79_2_a1/
LA  - en
ID  - SM_1994_79_2_a1
ER  - 
%0 Journal Article
%A V. E. Maiorov
%T Kolmogorov's $(n,\delta)$-widths of spaces of smooth functions
%J Sbornik. Mathematics
%D 1994
%P 265-279
%V 79
%N 2
%U http://geodesic.mathdoc.fr/item/SM_1994_79_2_a1/
%G en
%F SM_1994_79_2_a1
V. E. Maiorov. Kolmogorov's $(n,\delta)$-widths of spaces of smooth functions. Sbornik. Mathematics, Tome 79 (1994) no. 2, pp. 265-279. http://geodesic.mathdoc.fr/item/SM_1994_79_2_a1/

[1] Brudnyi Yu. A., Timan A. F., “Konstruktivnye kharakteristiki kompaktnykh mnozhestv v prostranstvakh Banakha i $\varepsilon $-entropiya”, DAN SSSR, 126 (1959), 927–930 | MR | Zbl

[2] Buslaev A. P., “O nailuchshei approksimatsii sluchainykh funktsii i funktsionalov”, Tr. 3-i Saratovskoi zimn. shkoly, T. 2, Sarat. un-t, 1988, 14–17 | MR

[3] Voronin S. M., Temirgaliev N., “O nekotorykh prilozheniyakh mery Banakha”, Izv. AN KazSSR. Ser. fiz.-mat., 5 (1984), 8–11 | MR | Zbl

[4] Garnaev A. Yu., Gluskin E. D., “O poperechnikakh evklidova shara”, DAN SSSR, 277 (1984), 1048–1052 | MR | Zbl

[5] Go Kh.-S., Gaussovy mery v banakhovykh prostranstvakh, Mir, M., 1979

[6] Zigmund A., Trigonometricheskie ryady, Mir, M., 1965 | MR

[7] Kashin B. S., “Poperechniki nekotorykh konechnomernykh mnozhestv i klassov gladkikh funktsii”, Izv. AN SSSR. Ser. matem., 41:2 (1977), 334–351 | MR | Zbl

[8] Maiorov V. E., “O lineinykh poperechnikakh sobolevskikh klassov i tsepochkakh ekstremalnykh podprostranstv”, Matem. sb., 113(155) (1980), 437–463 | MR | Zbl

[9] Maiorov V. E., “Integralnye i kolmogorovskie poperechniki klassov differentsiruemykh funktsii”, DAN SSSR, 318:5 (1991), 1082–1085 | MR | Zbl

[10] Maiorov V. E., “Poperechniki prostranstv, nadelennykh meroi”, DAN SSSR, 323:2 (1992), 233–237 | MR | Zbl

[11] Makovoz Yu. I., “Ob odnom prieme otsenki snizu poperechnikov mnozhestv v banakhovykh prostranstvakh”, Matem. sb., 87(129) (1972), 136–142 | MR | Zbl

[12] Mathé P., “$s$-Number in information-based complexity”, J. Complexity, 6 (1990), 41–66 | DOI | MR | Zbl

[13] Pich A., Operatornye idealy, Mir, M., 1982 | MR

[14] Pinkus A., $n$-Widths in Approximation theory, Springer-Verlag, Berlin–Heidelberg–N.Y., 1985 | MR

[15] Gluskin E. D., “Normy sluchainykh matrits i poperechniki konechnomernykh mnozhestv”, Matem. sb., 120(162) (1983), 180–189 | MR | Zbl

[16] Tikhomirov V. M., Nekotorye voprosy teorii priblizhenii, Izd-vo MGU, M., 1976 | MR

[17] Traub J. F., Wasilkowski G. W., Wozniakowski H., Information-based complexity, Acad. Press, N.Y., 1988 | MR | Zbl

[18] Suldin A. V., “Vinerovskaya mera i ee prilozheniya v teorii approksimatsii, I”, Izv. vuzov. Matematika, 1959, no. 6, 145–158 | MR | Zbl

[19] Suldin A. V., “Vinerovskaya mera i ee prilozheniya v teorii approksimatsii, II”, Izv. vuzov. Matematika, 1960, no. 5, 165–179 | MR | Zbl

[20] Larkin F. M., “Gaussian measure in Hilbert space with responducing kernel functions”, Math. Comput., 24 (1970), 911–921 | DOI | MR