Kolmogorov's $(n,\delta)$-widths of spaces of smooth functions
    
    
  
  
  
      
      
      
        
Sbornik. Mathematics, Tome 79 (1994) no. 2, pp. 265-279
    
  
  
  
  
  
    
      
      
        
      
      
      
    Voir la notice de l'article provenant de la source Math-Net.Ru
            
              			Kolmogorov's $(n,\delta)$-widths of the Sobolev spaces $W_2^r$, equipped with a Gaussian probability measure $\mu$, are studied in the metric of $L_q$:
$$
d_{n,\delta}(W_2^r,\mu,L_q)=\inf_{G\subset W_2^r}d_n(W_2^r\setminus G,L_q),
$$
where $d_n(K, L_q)$ is Kolmogorov's $n$-width of the set $K$ in the space $L_q$, and the infimum is taken over all possible subsets $G\subset W_2^r$ with measure $\mu(G)\le\delta$, $0\le\delta\le1$. The asymptotic equality 
$$
d_{n,\delta}(W_2^r,\mu,L_q)\asymp n^{-r-\varepsilon}\sqrt{1+\frac1n\ln\frac1\delta}
$$
with respect to $n$ and $\delta$ is obtained, where $1\le q\le\infty$ and $\varepsilon>0$ is an arbitrary number depending only on the measure $\mu$.
			
            
            
            
          
        
      @article{SM_1994_79_2_a1,
     author = {V. E. Maiorov},
     title = {Kolmogorov's $(n,\delta)$-widths of spaces of smooth functions},
     journal = {Sbornik. Mathematics},
     pages = {265--279},
     publisher = {mathdoc},
     volume = {79},
     number = {2},
     year = {1994},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_1994_79_2_a1/}
}
                      
                      
                    V. E. Maiorov. Kolmogorov's $(n,\delta)$-widths of spaces of smooth functions. Sbornik. Mathematics, Tome 79 (1994) no. 2, pp. 265-279. http://geodesic.mathdoc.fr/item/SM_1994_79_2_a1/
