Rational closures of group rings of left-ordered groups
Sbornik. Mathematics, Tome 79 (1994) no. 2, pp. 231-263

Voir la notice de l'article provenant de la source Math-Net.Ru

Suppose $K$ is a division ring, and $G$ is a left-ordered group such that for any Dedekind cut $\varepsilon$ of the linearly ordered set $(G,\le)$ the group $S=\{g\in G\mid g\varepsilon=\varepsilon\}$ is such that $KS$ is a right Ore domain and the group $H=\{g\in G\mid gP(G)g^{-1}=P(G)\}$ is cofinal in $G$. Then the group ring $KG$ can be embedded in a division ring having a valuation in the sense of Mathiak with values in $G$. If $G$ is the group of a trifolium, this construction leads to an example of a chain domain with a prime, but not completely prime, ideal.
@article{SM_1994_79_2_a0,
     author = {N. I. Dubrovin},
     title = {Rational closures of group rings of left-ordered groups},
     journal = {Sbornik. Mathematics},
     pages = {231--263},
     publisher = {mathdoc},
     volume = {79},
     number = {2},
     year = {1994},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_1994_79_2_a0/}
}
TY  - JOUR
AU  - N. I. Dubrovin
TI  - Rational closures of group rings of left-ordered groups
JO  - Sbornik. Mathematics
PY  - 1994
SP  - 231
EP  - 263
VL  - 79
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SM_1994_79_2_a0/
LA  - en
ID  - SM_1994_79_2_a0
ER  - 
%0 Journal Article
%A N. I. Dubrovin
%T Rational closures of group rings of left-ordered groups
%J Sbornik. Mathematics
%D 1994
%P 231-263
%V 79
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SM_1994_79_2_a0/
%G en
%F SM_1994_79_2_a0
N. I. Dubrovin. Rational closures of group rings of left-ordered groups. Sbornik. Mathematics, Tome 79 (1994) no. 2, pp. 231-263. http://geodesic.mathdoc.fr/item/SM_1994_79_2_a0/