Rational closures of group rings of left-ordered groups
Sbornik. Mathematics, Tome 79 (1994) no. 2, pp. 231-263
Voir la notice de l'article provenant de la source Math-Net.Ru
Suppose $K$ is a division ring, and $G$ is a left-ordered group such that for any Dedekind cut $\varepsilon$ of the linearly ordered set $(G,\le)$ the group $S=\{g\in G\mid g\varepsilon=\varepsilon\}$ is such that $KS$ is a right Ore domain and the group
$H=\{g\in G\mid gP(G)g^{-1}=P(G)\}$ is cofinal in $G$. Then the group ring $KG$ can be embedded in a division ring having a valuation in the sense of Mathiak with values in $G$. If $G$ is the group of a trifolium, this construction leads to an example of a chain domain with a prime, but not completely prime, ideal.
@article{SM_1994_79_2_a0,
author = {N. I. Dubrovin},
title = {Rational closures of group rings of left-ordered groups},
journal = {Sbornik. Mathematics},
pages = {231--263},
publisher = {mathdoc},
volume = {79},
number = {2},
year = {1994},
language = {en},
url = {http://geodesic.mathdoc.fr/item/SM_1994_79_2_a0/}
}
N. I. Dubrovin. Rational closures of group rings of left-ordered groups. Sbornik. Mathematics, Tome 79 (1994) no. 2, pp. 231-263. http://geodesic.mathdoc.fr/item/SM_1994_79_2_a0/