On anisotropic Hardy inequalities and their applications
Sbornik. Mathematics, Tome 79 (1994) no. 1, pp. 141-166 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

Certain generalizations of the Hardy inequality are obtained for functions in anisotropic Sobolev spaces on $R^n$ and on certain unbounded domains satisfying a horn condition. On the basis of these inequalities the uniqueness of solution for the Neumann problem in an unbounded domain of 'layer' type is proved and the general form of this solution for a class of quasielliptic equations is established. In addition, a theorem on the absence of negative spectrum is proved for a certain class of such equations, considered in $R^n$.
@article{SM_1994_79_1_a9,
     author = {R. V. Guseinov},
     title = {On anisotropic {Hardy} inequalities and their applications},
     journal = {Sbornik. Mathematics},
     pages = {141--166},
     year = {1994},
     volume = {79},
     number = {1},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_1994_79_1_a9/}
}
TY  - JOUR
AU  - R. V. Guseinov
TI  - On anisotropic Hardy inequalities and their applications
JO  - Sbornik. Mathematics
PY  - 1994
SP  - 141
EP  - 166
VL  - 79
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/SM_1994_79_1_a9/
LA  - en
ID  - SM_1994_79_1_a9
ER  - 
%0 Journal Article
%A R. V. Guseinov
%T On anisotropic Hardy inequalities and their applications
%J Sbornik. Mathematics
%D 1994
%P 141-166
%V 79
%N 1
%U http://geodesic.mathdoc.fr/item/SM_1994_79_1_a9/
%G en
%F SM_1994_79_1_a9
R. V. Guseinov. On anisotropic Hardy inequalities and their applications. Sbornik. Mathematics, Tome 79 (1994) no. 1, pp. 141-166. http://geodesic.mathdoc.fr/item/SM_1994_79_1_a9/

[1] Khardi G. G., Litlvud D. E., Polia G., Neravenstva, IL, M., 1948

[2] Besov O. B., Ilin V. P., Nikolskii S. M., Integralnye predstavleniya funktsii i teoremy vlozheniya, Nauka, M., 1975 | MR | Zbl

[3] Birman M. Sh., Solomyak M. Z., Kolichestvennyi analiz v teoremakh vlozheniya Soboleva i prilozheniya k spektralnoi teorii, Desyataya mat. shkola, Inst. matematiki AN USSR, Kiev, 1974

[4] Opic B., Kufner A., Hardy-type inequalities, Pitman Research Notes in Mathematics Series, 219, Longman, Harlow, 1990 | MR | Zbl

[5] Nikolskii Yu. S., “Integralnye otsenki differentsiruemykh funktsii iz vesovykh anizotropnykh prostranstv na neogranichennykh oblastyakh”, Tr. MIAN, 181, Nauka, M., 1988, 222–240 | Zbl

[6] Uspenskii S. V. i dr., Teoremy vlozheniya k differentsialnym uravneniyam, Nauka, Sib. otd., Novosibirsk, 1984 | Zbl

[7] Bagirov L. A., “Apriornye otsenki, teoremy suschestvovaniya i povedenie na beskonechnosti reshenii kvaziellipticheskikh uravnenii v $R^n$”, Matem. sb., 110:4 (1979), 475–492 | MR | Zbl

[8] Giusti E., “Equazioni quasi ellittiche c spazi $S^{p,\theta }(\Omega,\delta )$, I”, Ann. Mat. Pure Appl., Ser. 4, 75 (1967), 313–353 | DOI | MR | Zbl

[9] Guseinov R. V., “O resheniyakh kvaziellipticheskikh uravnenii v tsilindre, udovletvoryayuschikh usloviyu Neimana na nekompaktnoi chasti granitsy”, Diff. uravneniya, 1990, no. 11, 2004–2006 | MR | Zbl

[10] Guseinov R. V., “Ob asimptoticheskom povedenii reshenii kvaziellipticheskikh uravnenii v neogranichennykh oblastyakh tipa sloya”, DAN Azerb. SSR, 45:8 (1989), 1–3 | MR

[11] Kondratev V. A., Egorov Yu. V., “Ob otritsatelnom spektre ellipticheskogo operatora”, Matem. sb., 181:2 (1990), 147–166 | MR

[12] Sohechter M., “Hamiltonians for singular potentials”, Indiana University Math. Journal, 22:5 (1972), 483–502 | DOI | MR

[13] Rid M., Saimon B., Metody sovremennoi matematicheskoi fiziki, T. 4, Mir, M., 1982