First-order necessary conditions in the~problem of optimal control of a~differential inclusion with phase constraints
Sbornik. Mathematics, Tome 79 (1994) no. 1, pp. 117-139
Voir la notice de l'article provenant de la source Math-Net.Ru
Nondegenerate first-order necessary conditions for optimality are obtained for the problem (1.1)–(1.4) under different assumptions about controllability at the endpoints. These necessary conditions are obtained in the Hamiltonian form of Clarke [1]. With the help of a smoothing technique [2] the perturbation method in [3] is used to carry the main results in [4] (there the case when the support function $H(x,t,\psi)=\sup_{y\in F(x,t)}\langle y,\psi\rangle$ depends smoothly on the variable $x$ is considered) over to the more natural class of problems with locally Lipschitz support function $H$.
@article{SM_1994_79_1_a8,
author = {A. V. Arutyunov and S. M. Aseev and V. I. Blagodatskikh},
title = {First-order necessary conditions in the~problem of optimal control of a~differential inclusion with phase constraints},
journal = {Sbornik. Mathematics},
pages = {117--139},
publisher = {mathdoc},
volume = {79},
number = {1},
year = {1994},
language = {en},
url = {http://geodesic.mathdoc.fr/item/SM_1994_79_1_a8/}
}
TY - JOUR AU - A. V. Arutyunov AU - S. M. Aseev AU - V. I. Blagodatskikh TI - First-order necessary conditions in the~problem of optimal control of a~differential inclusion with phase constraints JO - Sbornik. Mathematics PY - 1994 SP - 117 EP - 139 VL - 79 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/SM_1994_79_1_a8/ LA - en ID - SM_1994_79_1_a8 ER -
%0 Journal Article %A A. V. Arutyunov %A S. M. Aseev %A V. I. Blagodatskikh %T First-order necessary conditions in the~problem of optimal control of a~differential inclusion with phase constraints %J Sbornik. Mathematics %D 1994 %P 117-139 %V 79 %N 1 %I mathdoc %U http://geodesic.mathdoc.fr/item/SM_1994_79_1_a8/ %G en %F SM_1994_79_1_a8
A. V. Arutyunov; S. M. Aseev; V. I. Blagodatskikh. First-order necessary conditions in the~problem of optimal control of a~differential inclusion with phase constraints. Sbornik. Mathematics, Tome 79 (1994) no. 1, pp. 117-139. http://geodesic.mathdoc.fr/item/SM_1994_79_1_a8/