First-order necessary conditions in the problem of optimal control of a differential inclusion with phase constraints
Sbornik. Mathematics, Tome 79 (1994) no. 1, pp. 117-139 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

Nondegenerate first-order necessary conditions for optimality are obtained for the problem (1.1)–(1.4) under different assumptions about controllability at the endpoints. These necessary conditions are obtained in the Hamiltonian form of Clarke [1]. With the help of a smoothing technique [2] the perturbation method in [3] is used to carry the main results in [4] (there the case when the support function $H(x,t,\psi)=\sup_{y\in F(x,t)}\langle y,\psi\rangle$ depends smoothly on the variable $x$ is considered) over to the more natural class of problems with locally Lipschitz support function $H$.
@article{SM_1994_79_1_a8,
     author = {A. V. Arutyunov and S. M. Aseev and V. I. Blagodatskikh},
     title = {First-order necessary conditions in the~problem of optimal control of a~differential inclusion with phase constraints},
     journal = {Sbornik. Mathematics},
     pages = {117--139},
     year = {1994},
     volume = {79},
     number = {1},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_1994_79_1_a8/}
}
TY  - JOUR
AU  - A. V. Arutyunov
AU  - S. M. Aseev
AU  - V. I. Blagodatskikh
TI  - First-order necessary conditions in the problem of optimal control of a differential inclusion with phase constraints
JO  - Sbornik. Mathematics
PY  - 1994
SP  - 117
EP  - 139
VL  - 79
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/SM_1994_79_1_a8/
LA  - en
ID  - SM_1994_79_1_a8
ER  - 
%0 Journal Article
%A A. V. Arutyunov
%A S. M. Aseev
%A V. I. Blagodatskikh
%T First-order necessary conditions in the problem of optimal control of a differential inclusion with phase constraints
%J Sbornik. Mathematics
%D 1994
%P 117-139
%V 79
%N 1
%U http://geodesic.mathdoc.fr/item/SM_1994_79_1_a8/
%G en
%F SM_1994_79_1_a8
A. V. Arutyunov; S. M. Aseev; V. I. Blagodatskikh. First-order necessary conditions in the problem of optimal control of a differential inclusion with phase constraints. Sbornik. Mathematics, Tome 79 (1994) no. 1, pp. 117-139. http://geodesic.mathdoc.fr/item/SM_1994_79_1_a8/

[1] Klark F., Optimizatsiya i negladkii analiz, Nauka, M., 1988 | MR | Zbl

[2] Aseev S. M., Smooth approximations of differential inclusions and time-optimal problem, CRM–1610, Montreal, 1989

[3] Arutyunov A. V., Itogi nauki i tekhniki. Matem. analiz, 27, VINITI, M., 1989, 147–235 | MR

[4] Arutyunov A. V., Blagodatskikh V. I., “Printsip maksimuma dlya differentsialnykh vklyuchenii s fazovymi ogranicheniyami”, Tr. MIAN, 200, Nauka, M., 1991, 4–26 | Zbl

[5] Dubovitskii A. Ya., Dubovitskii V. A., “Neobkhodimye usloviya silnogo minimuma v zadachakh optimalnogo upravleniya s vyrozhdeniem kontsevykh i fazovykh ogranichenii”, UMN, 40:2 (1985), 175–176 | MR

[6] Papas G. S., “Optimal solutions to differential inclusions in presence of state constraints”, J. Optimiz. Theory and Appl., 44:4, 657–679 | DOI | MR

[7] Loewen P. D., Rockafellar R. T., “The adjoint arc in nonsmooth optimization”, Trans. Amer. Math. Soc., 325:1 (1991), 39–72 | DOI | MR | Zbl

[8] Arutyunov A. V., Tynyanskii N. T., “Znakoopredelennost kvad­ratichnykh form na konuse”, UMN, 39:2 (1984), 133–134 | MR

[9] Dubovitskii A. Ya., Dubovitskii V. A., Usloviya potochechnoi netrivialnosti printsipa maksimuma v regulyarnoi zadache optimalnogo upravleniya, Prepr. No 27 In-ta prikl. mat. Tbil. gos. universiteta, 1988, s. 60–88 | MR

[10] Dubovitskii A. Ya., Dubovitskii V. A., Printsip maksimuma traektorii, kontsy kotorykh lezhat na fazovoi granitse, Prepr., Chernogolovka, 1988

[11] Arutyunov A. V., “K teorii printsipa maksimuma v zadachakh optimalnogo upravleniya s fazovymi ogranicheniyami”, DAN SSSR, 304:1 (1989), 11–14 | MR | Zbl

[12] Arutyunov A. V., “K neobkhodimym usloviyam optimalnosti v zadache s fazovymi ogranicheniyami”, DAN SSSR, 280:5 (1985), 1033–1037 | MR | Zbl

[13] Arutyunov A. V., Neobkhodimye usloviya s fazovymi ogranicheniyami, Prepr. No 27 In-ta prikl. mat. Tbil. gos. universiteta, 1988, s. 46–58 | MR | Zbl

[14] Pontryagin L. S., Boltyanskii V. G., Gamkrelidze R. V., Mischenko E. F., Matematicheskaya teoriya optimalnykh protsessov, Nauka, M., 1969

[15] Blagodatskikh V. I., Filippov A. F., “Differentsialnye vklyucheniya i optimalnoe upravlenie”, Tr. MIAN, 169, Nauka, M., 1985, 194–252 | MR | Zbl

[16] Schneider R., “Smooth approximation of convex bodies”, Rendiconti del Circ. Matem di Palermo. Ser. 2, 33 (1984), 436–440 | DOI | MR | Zbl

[17] Edvards R., Funktsionalnyi analiz, Mir, M., 1969

[18] Michael E. A., “Continuous selections, I”, Ann. Math., 63:2 (1956), 361–381 | DOI | MR

[19] Warga J., “Derivative containers, inverse functions and controllability”, Proc. Intern. Symp. on the Calculus of Variations and Control Theory Ed., ed. D. L. Russell, Acad. press, 1976 | MR