Transversals of families of sets in $\mathbb{R}^n$ and a connection between the Helly and Borsuk theorems
Sbornik. Mathematics, Tome 79 (1994) no. 1, pp. 93-107 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

A criterion is obtained for the existence, given a family of convex sets in $\mathbb{R}^n$, of an $m$-dimensional plane intersecting all members of the family. The results are a generalization of the theorems of Helly, Horn–Klee, and Borsuk. Also presented are applications of these results to the geometry of convex sets and to combinatorics.
@article{SM_1994_79_1_a6,
     author = {V. L. Dol'nikov},
     title = {Transversals of families of sets in $\mathbb{R}^n$ and a~connection between {the~Helly} and {Borsuk} theorems},
     journal = {Sbornik. Mathematics},
     pages = {93--107},
     year = {1994},
     volume = {79},
     number = {1},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_1994_79_1_a6/}
}
TY  - JOUR
AU  - V. L. Dol'nikov
TI  - Transversals of families of sets in $\mathbb{R}^n$ and a connection between the Helly and Borsuk theorems
JO  - Sbornik. Mathematics
PY  - 1994
SP  - 93
EP  - 107
VL  - 79
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/SM_1994_79_1_a6/
LA  - en
ID  - SM_1994_79_1_a6
ER  - 
%0 Journal Article
%A V. L. Dol'nikov
%T Transversals of families of sets in $\mathbb{R}^n$ and a connection between the Helly and Borsuk theorems
%J Sbornik. Mathematics
%D 1994
%P 93-107
%V 79
%N 1
%U http://geodesic.mathdoc.fr/item/SM_1994_79_1_a6/
%G en
%F SM_1994_79_1_a6
V. L. Dol'nikov. Transversals of families of sets in $\mathbb{R}^n$ and a connection between the Helly and Borsuk theorems. Sbornik. Mathematics, Tome 79 (1994) no. 1, pp. 93-107. http://geodesic.mathdoc.fr/item/SM_1994_79_1_a6/

[1] Helly E., “Über Mengen konvexer Körper mit gemeinschflichen Punkten”, Uber. Deutsch. Math. Verein, 32 (1923), 175–176 | Zbl

[2] Vincensini P., “Figures convexes et variêtes linêaires de l'espace euclidien á n dimensions”, Bull. Sci. Math., 59 (1935), 163–174 | Zbl

[3] Khadviger G., Debrunner G., Kombinatornaya geometriya ploskosti, Nauka, M., 1965 | MR

[4] Dantser L., Gryunbaum B., Kli V., Teorema Khelli i ee primeneniya, Mir, M., 1968 | MR

[5] Tverberg H., “Proof of Grünbaum's Conjecture on Common Transversals for Translates”, Discrete Comp. Geom., 4 (1989), 191–203 | DOI | MR | Zbl

[6] Katchalski M., Lewis T., Lin A., “Geometric permutation for convex sets”, Discrete Math., 54 (1985), 271–284 | DOI | MR | Zbl

[7] Borsuk K., “Drei Sätze über die $n$-dimensional euklidusche Sphare”, Fund. Math., 20 (1933), 177–190

[8] Lyusternik L. A., Shnirelman L. G., Topologicheskie metody v variatsionnykh zadachakh, GITTL, M., 1930

[9] Milnor Dzh., Stashev Dzh., Kharakteristicheskie klassy, Mir, M., 1979 | MR | Zbl

[10] Dolnikov V. L., “O transversalyakh semeistv mnozhestv”, Issled. po teorii funktsii mnogikh vesch. perem, Yaroslavl, 1981, 30–36 | MR

[11] Dolnikov V. L., “Obobschennye transversali semeistv mnozhestv v $\mathbb R^n $ i svyazi mezhdu teoremami Khelli i Borsuka”, DAN SSSR, 297:4 (1987), 777–780 | MR

[12] Chern S. S., “Geometriya kharakteristicheskikh klassov”, UMN, 28:3 (1973), 121–160 | MR | Zbl

[13] Griffits F., Kharris Dzh., Printsipy algebraicheskoi geometrii, Mir, M., 1982 | MR

[14] Dolnikov V. L., “Ob odnom kombinatornom neravenstve”, Sib. matem. zhurn., 29:3 (1988), 53–58 | MR

[15] Tikhomirov V. M., “Poperechniki mnozhestv v funktsionalnykh prostranstvakh i teoriya nailuchshikh priblizhenii”, UMN, 15:3 (1960), 81–120 | MR | Zbl

[16] Stahl S., “Reductions of $n $-fold covers”, Proc. Amer. Math. Soc., 2:2 (1978), 422–424 | DOI | MR

[17] Dolnikov V. L., “O peresechenii konicheskikh i vypuklykh obolochek mnozhestv v $\mathbb R^n$”, Issled. po teorii funktsii mnogikh vesch. perem., Yaroslavl, 1987, 52–60

[18] Lenz H., “Zur Zerlegung von Punktmengen in solche kleineren Durchmessers”, Archiv. Math., 6:5 (1955), S. 413–416 | DOI | MR

[19] Alekseev V. M., Galeev E. M., Tikhomirov V. M., Sbornik zadach po optimizatsii, Nauka, M., 1984 | MR

[20] Shafarevich I. R., Osnovy algebraicheskoi geometrii, Nauka, M., 1972 | MR | Zbl

[21] Dolnikov V. L., “O transversalyakh semeistv mnozhestv”, Vopr. teorii grupp i gomol. algebry, Yaroslavl, 1990, 164–166 | MR

[22] Bang Th., “A solution of the “plank problem””, Proc. Amer. Math. Soc., 2 (1951), 990–993 | DOI | MR | Zbl

[23] Alon N., Frankl P., Lovasz L., “The chromatic number of Knezer hypergraphs”, Trans. AMS, 98 (1986), 359–370 | DOI | MR