On spectral sequences of evolution systems with constraints
Sbornik. Mathematics, Tome 79 (1994) no. 1, pp. 33-45 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

Spectral sequences of evolution systems with constraints are described in terms of the spectral sequences of the constraints.
@article{SM_1994_79_1_a2,
     author = {V. V. Zharinov},
     title = {On spectral sequences of evolution systems with constraints},
     journal = {Sbornik. Mathematics},
     pages = {33--45},
     year = {1994},
     volume = {79},
     number = {1},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_1994_79_1_a2/}
}
TY  - JOUR
AU  - V. V. Zharinov
TI  - On spectral sequences of evolution systems with constraints
JO  - Sbornik. Mathematics
PY  - 1994
SP  - 33
EP  - 45
VL  - 79
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/SM_1994_79_1_a2/
LA  - en
ID  - SM_1994_79_1_a2
ER  - 
%0 Journal Article
%A V. V. Zharinov
%T On spectral sequences of evolution systems with constraints
%J Sbornik. Mathematics
%D 1994
%P 33-45
%V 79
%N 1
%U http://geodesic.mathdoc.fr/item/SM_1994_79_1_a2/
%G en
%F SM_1994_79_1_a2
V. V. Zharinov. On spectral sequences of evolution systems with constraints. Sbornik. Mathematics, Tome 79 (1994) no. 1, pp. 33-45. http://geodesic.mathdoc.fr/item/SM_1994_79_1_a2/

[1] Dirak P. A. M., Lektsii po kvantovoi mekhanike, Mir, M., 1968

[2] Gitman D. M., Tyutin I. V., Kanonicheskoe kvantovanie sistem so svyazyami, Nauka, M., 1986 | MR | Zbl

[3] Mukminov F. Kh., Sokolov V. V., “Integriruemye differentsialnye uravneniya so svyazyami”, Matem. sb., 133:3 (1987), 392–414 | MR | Zbl

[4] Ovsyannikov L. V., Gruppovoi analiz differentsialnykh uravnenii, Nauka, M., 1978 | MR

[5] Ibragimov N. Kh., Gruppy preobrazovanii v matematicheskoi fizike, Nauka, M., 1983 | MR

[6] Vinogradov A. M., Krasilschik I. S., Lychagin V. V., Vvedenie v geometriyu nelineinykh differentsialnykh uravnenii, Nauka, M., 1986 | MR

[7] Olver P. Dzh., Primenenie grupp Li k differentsialnym uravneniyam, Mir, M., 1989 | MR | Zbl

[8] Zharinov V. V., Geometrical aspects of partial differential equations, World Scientific, Singapore, 1992 | MR | Zbl

[9] Zharinov V. V., “Vneshnyaya geometriya differentsialnykh uravnenii i formula Grina”, Izvestiya AN SSSR. Ser. matem., 53:4 (1989), 708–730 | MR

[10] Zharinov V. V., “O sootvetstvii Beklunda”, Matem. sb., 136:2 (1988), 274–291 | MR

[11] Vinogradov A. M., “Odna spektralnaya posledovatelnost, svyazannaya s nelineinym differentsialnym uravneniem, i algebro-geometricheskie osnovaniya lagranzhevoi teorii polya so svyazyami”, DAN SSSR, 238:5 (1978), 1028–1031 | MR | Zbl

[12] Vinogradov A. M., “The $\mathcal C$-spectral sequence, lagrangian formalism, and conservation laws”, J. Math. Anal. Appl., 100:1 (1984), 1–129 | DOI | MR

[13] Tsujishita T., “On variation bicomplexes associated to differential equations”, Osaka J. Math., 19 (1982), 311–163 | MR

[14] Maklein S., Gomologiya, Mir, M., 1966

[15] Zharinov V. V., “Differentsialnye algebry i zakony sokhraneniya nizshikh razmernostei”, Matem. sb., 181:11 (1990), 1475–1485